{"title":"东江源区景观格局对水质的尺度效应","authors":"You-Liang Chen, Wen-Min Zou, Xing-Gen Liu, Jin-Feng Zeng, Dan Li, Han-Yi Zheng","doi":"10.13227/j.hjkx.202201128","DOIUrl":null,"url":null,"abstract":"<p><p>Based on water quality monitoring data and land use data, Dongjiang River source watershed water quality variation characteristics from 2017 to 2019 and the relationships between the landscape pattern of the Dongjiang River source watershed and water quality were analyzed using spatial analysis, correlation analysis, and redundancy analysis. The results showed that:① the water quality of the Dongjiang River source watershed improved overall, but the total nitrogen pollution was still severe. As of 2019, the annual average concentration of total nitrogen in all sampling points exceeded the type Ⅲ water quality standard. ② At the landscape level, water quality was positively correlated with landscape shape index, number of patches, and Shannon's diversity index but negatively correlated with largest patch index and aggregation index. Considering the land use type, construction land was the primary source of total nitrogen and total phosphorus. Landscape shape index and number of forest patches were positively correlated with NH<sub>4</sub><sup>+</sup>-N. The number of forest patches was positively correlated with total phosphorus. However, the largest patch index and aggregation index of the forest were negatively correlated with total phosphorus. The number of patches of grassland was positively correlated with total phosphorus. The aggregation index of grassland was negatively correlated with total phosphorus. ③ It is suggested that management departments should focus on the optimization of the landscape pattern within the 2000 m buffer zone of monitoring points. The reasonable allocation of urban sewage-centralized treatment facilities, strengthening management of abandoned mining areas, improvement of intensive treatment of cultivated land, and construction of shelterbelt in areas where cultivated land is concentrated are beneficial for the water quality of Dongjiang River source watershed.</p>","PeriodicalId":172067,"journal":{"name":"Huan jing ke xue= Huanjing kexue","volume":"43 11","pages":"5053-5063"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Scale Effects of Landscape Pattern on Water Quality in Dongjiang River Source Watershed].\",\"authors\":\"You-Liang Chen, Wen-Min Zou, Xing-Gen Liu, Jin-Feng Zeng, Dan Li, Han-Yi Zheng\",\"doi\":\"10.13227/j.hjkx.202201128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Based on water quality monitoring data and land use data, Dongjiang River source watershed water quality variation characteristics from 2017 to 2019 and the relationships between the landscape pattern of the Dongjiang River source watershed and water quality were analyzed using spatial analysis, correlation analysis, and redundancy analysis. The results showed that:① the water quality of the Dongjiang River source watershed improved overall, but the total nitrogen pollution was still severe. As of 2019, the annual average concentration of total nitrogen in all sampling points exceeded the type Ⅲ water quality standard. ② At the landscape level, water quality was positively correlated with landscape shape index, number of patches, and Shannon's diversity index but negatively correlated with largest patch index and aggregation index. Considering the land use type, construction land was the primary source of total nitrogen and total phosphorus. Landscape shape index and number of forest patches were positively correlated with NH<sub>4</sub><sup>+</sup>-N. The number of forest patches was positively correlated with total phosphorus. However, the largest patch index and aggregation index of the forest were negatively correlated with total phosphorus. The number of patches of grassland was positively correlated with total phosphorus. The aggregation index of grassland was negatively correlated with total phosphorus. ③ It is suggested that management departments should focus on the optimization of the landscape pattern within the 2000 m buffer zone of monitoring points. The reasonable allocation of urban sewage-centralized treatment facilities, strengthening management of abandoned mining areas, improvement of intensive treatment of cultivated land, and construction of shelterbelt in areas where cultivated land is concentrated are beneficial for the water quality of Dongjiang River source watershed.</p>\",\"PeriodicalId\":172067,\"journal\":{\"name\":\"Huan jing ke xue= Huanjing kexue\",\"volume\":\"43 11\",\"pages\":\"5053-5063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Huan jing ke xue= Huanjing kexue\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13227/j.hjkx.202201128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Huan jing ke xue= Huanjing kexue","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202201128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Scale Effects of Landscape Pattern on Water Quality in Dongjiang River Source Watershed].
Based on water quality monitoring data and land use data, Dongjiang River source watershed water quality variation characteristics from 2017 to 2019 and the relationships between the landscape pattern of the Dongjiang River source watershed and water quality were analyzed using spatial analysis, correlation analysis, and redundancy analysis. The results showed that:① the water quality of the Dongjiang River source watershed improved overall, but the total nitrogen pollution was still severe. As of 2019, the annual average concentration of total nitrogen in all sampling points exceeded the type Ⅲ water quality standard. ② At the landscape level, water quality was positively correlated with landscape shape index, number of patches, and Shannon's diversity index but negatively correlated with largest patch index and aggregation index. Considering the land use type, construction land was the primary source of total nitrogen and total phosphorus. Landscape shape index and number of forest patches were positively correlated with NH4+-N. The number of forest patches was positively correlated with total phosphorus. However, the largest patch index and aggregation index of the forest were negatively correlated with total phosphorus. The number of patches of grassland was positively correlated with total phosphorus. The aggregation index of grassland was negatively correlated with total phosphorus. ③ It is suggested that management departments should focus on the optimization of the landscape pattern within the 2000 m buffer zone of monitoring points. The reasonable allocation of urban sewage-centralized treatment facilities, strengthening management of abandoned mining areas, improvement of intensive treatment of cultivated land, and construction of shelterbelt in areas where cultivated land is concentrated are beneficial for the water quality of Dongjiang River source watershed.