托吡酯重构对镉诱导大鼠睾丸损伤的抑制作用:NLRP3炎性体和AMPK/ mtor相关自噬的作用

Hany H Arab, Hayat A Abd El Aal, Shuruq E Alsufyani, Azza A K El-Sheikh, El-Shaimaa A Arafa, Ahmed M Ashour, Ahmed M Kabel, Ahmed H Eid
{"title":"托吡酯重构对镉诱导大鼠睾丸损伤的抑制作用:NLRP3炎性体和AMPK/ mtor相关自噬的作用","authors":"Hany H Arab,&nbsp;Hayat A Abd El Aal,&nbsp;Shuruq E Alsufyani,&nbsp;Azza A K El-Sheikh,&nbsp;El-Shaimaa A Arafa,&nbsp;Ahmed M Ashour,&nbsp;Ahmed M Kabel,&nbsp;Ahmed H Eid","doi":"10.3390/ph15111402","DOIUrl":null,"url":null,"abstract":"<p><p>Topiramate, a promising drug classically used for the management of neurological disorders including epilepsy and migraine, has demonstrated marked anti-inflammatory and anti-apoptotic actions in murine models of cardiac post-infarction inflammation, wound healing, and gastric/intestinal injury. However, its potential impact on cadmium-induced testicular injury remains to be elucidated. Herein, the present study aimed to explore the effect of topiramate against cadmium-invoked testicular impairment with emphasis on the molecular mechanisms linked to inflammation, apoptosis, and autophagy. Herein, administration of topiramate (50 mg/kg/day, by gavage) continued for 60 days and the testes were examined by histology, immunohistochemistry, and biochemical assays. The present data demonstrated that serum testosterone, sperm count/abnormalities, relative testicular weight, and histopathological aberrations were improved by topiramate administration to cadmium-intoxicated rats. The rescue of testicular dysfunction was driven by multi-pronged mechanisms including suppression of NLRP3/caspase-1/IL-1β cascade, which was evidenced by dampened caspase-1 activity, lowered IL-1β/IL-18 production, and decreased nuclear levels of activated NF-κBp65. Moreover, curbing testicular apoptosis was seen by lowered Bax expression, decreased caspase-3 activity, and upregulation of Bcl-2. In tandem, testicular autophagy was activated as seen by diminished p62 SQSTM1 accumulation alongside Beclin-1 upregulation. Autophagy activation was associated with AMPK/mTOR pathway stimulation demonstrated by decreased mTOR (Ser2448) phosphorylation and increased AMPK (Ser487) phosphorylation. In conclusion, combating inflammation/apoptosis and enhancing autophagic events by topiramate were engaged in ameliorating cadmium-induced testicular impairment.</p>","PeriodicalId":520747,"journal":{"name":"Pharmaceuticals (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697422/pdf/","citationCount":"5","resultStr":"{\"title\":\"Topiramate Reprofiling for the Attenuation of Cadmium-Induced Testicular Impairment in Rats: Role of NLRP3 Inflammasome and AMPK/mTOR-Linked Autophagy.\",\"authors\":\"Hany H Arab,&nbsp;Hayat A Abd El Aal,&nbsp;Shuruq E Alsufyani,&nbsp;Azza A K El-Sheikh,&nbsp;El-Shaimaa A Arafa,&nbsp;Ahmed M Ashour,&nbsp;Ahmed M Kabel,&nbsp;Ahmed H Eid\",\"doi\":\"10.3390/ph15111402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Topiramate, a promising drug classically used for the management of neurological disorders including epilepsy and migraine, has demonstrated marked anti-inflammatory and anti-apoptotic actions in murine models of cardiac post-infarction inflammation, wound healing, and gastric/intestinal injury. However, its potential impact on cadmium-induced testicular injury remains to be elucidated. Herein, the present study aimed to explore the effect of topiramate against cadmium-invoked testicular impairment with emphasis on the molecular mechanisms linked to inflammation, apoptosis, and autophagy. Herein, administration of topiramate (50 mg/kg/day, by gavage) continued for 60 days and the testes were examined by histology, immunohistochemistry, and biochemical assays. The present data demonstrated that serum testosterone, sperm count/abnormalities, relative testicular weight, and histopathological aberrations were improved by topiramate administration to cadmium-intoxicated rats. The rescue of testicular dysfunction was driven by multi-pronged mechanisms including suppression of NLRP3/caspase-1/IL-1β cascade, which was evidenced by dampened caspase-1 activity, lowered IL-1β/IL-18 production, and decreased nuclear levels of activated NF-κBp65. Moreover, curbing testicular apoptosis was seen by lowered Bax expression, decreased caspase-3 activity, and upregulation of Bcl-2. In tandem, testicular autophagy was activated as seen by diminished p62 SQSTM1 accumulation alongside Beclin-1 upregulation. Autophagy activation was associated with AMPK/mTOR pathway stimulation demonstrated by decreased mTOR (Ser2448) phosphorylation and increased AMPK (Ser487) phosphorylation. In conclusion, combating inflammation/apoptosis and enhancing autophagic events by topiramate were engaged in ameliorating cadmium-induced testicular impairment.</p>\",\"PeriodicalId\":520747,\"journal\":{\"name\":\"Pharmaceuticals (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697422/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals (Basel, Switzerland)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/ph15111402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals (Basel, Switzerland)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph15111402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

托吡酯是一种很有前景的药物,通常用于治疗包括癫痫和偏头痛在内的神经系统疾病,在小鼠心肌梗死后炎症、伤口愈合和胃/肠损伤模型中显示出明显的抗炎和抗凋亡作用。然而,其对镉致睾丸损伤的潜在影响仍有待阐明。本研究旨在探讨托吡酯对镉引起的睾丸损伤的影响,重点研究与炎症、细胞凋亡和自噬相关的分子机制。本研究中,托吡酯(50 mg/kg/天,灌胃)持续给药60天,并通过组织学、免疫组织化学和生化分析检查睾丸。目前的数据表明,托吡酯对镉中毒大鼠的血清睾酮、精子计数/异常、相对睾丸重量和组织病理学畸变均有改善。睾丸功能障碍的恢复是由NLRP3/caspase-1/IL-1β级联抑制等多管齐下的机制驱动的,这可以通过抑制caspase-1活性、降低IL-1β/IL-18的产生和降低活化的NF-κBp65的核水平来证明。此外,通过降低Bax表达、降低caspase-3活性和上调Bcl-2来抑制睾丸细胞凋亡。与此同时,睾丸自噬被激活,p62 SQSTM1积累减少,Beclin-1上调。自噬激活与AMPK/mTOR通路刺激相关,表现为mTOR (Ser2448)磷酸化降低,AMPK (Ser487)磷酸化升高。综上所述,托吡酯抗炎症/细胞凋亡和增强自噬事件参与改善镉诱导的睾丸损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Topiramate Reprofiling for the Attenuation of Cadmium-Induced Testicular Impairment in Rats: Role of NLRP3 Inflammasome and AMPK/mTOR-Linked Autophagy.

Topiramate Reprofiling for the Attenuation of Cadmium-Induced Testicular Impairment in Rats: Role of NLRP3 Inflammasome and AMPK/mTOR-Linked Autophagy.

Topiramate Reprofiling for the Attenuation of Cadmium-Induced Testicular Impairment in Rats: Role of NLRP3 Inflammasome and AMPK/mTOR-Linked Autophagy.

Topiramate Reprofiling for the Attenuation of Cadmium-Induced Testicular Impairment in Rats: Role of NLRP3 Inflammasome and AMPK/mTOR-Linked Autophagy.

Topiramate, a promising drug classically used for the management of neurological disorders including epilepsy and migraine, has demonstrated marked anti-inflammatory and anti-apoptotic actions in murine models of cardiac post-infarction inflammation, wound healing, and gastric/intestinal injury. However, its potential impact on cadmium-induced testicular injury remains to be elucidated. Herein, the present study aimed to explore the effect of topiramate against cadmium-invoked testicular impairment with emphasis on the molecular mechanisms linked to inflammation, apoptosis, and autophagy. Herein, administration of topiramate (50 mg/kg/day, by gavage) continued for 60 days and the testes were examined by histology, immunohistochemistry, and biochemical assays. The present data demonstrated that serum testosterone, sperm count/abnormalities, relative testicular weight, and histopathological aberrations were improved by topiramate administration to cadmium-intoxicated rats. The rescue of testicular dysfunction was driven by multi-pronged mechanisms including suppression of NLRP3/caspase-1/IL-1β cascade, which was evidenced by dampened caspase-1 activity, lowered IL-1β/IL-18 production, and decreased nuclear levels of activated NF-κBp65. Moreover, curbing testicular apoptosis was seen by lowered Bax expression, decreased caspase-3 activity, and upregulation of Bcl-2. In tandem, testicular autophagy was activated as seen by diminished p62 SQSTM1 accumulation alongside Beclin-1 upregulation. Autophagy activation was associated with AMPK/mTOR pathway stimulation demonstrated by decreased mTOR (Ser2448) phosphorylation and increased AMPK (Ser487) phosphorylation. In conclusion, combating inflammation/apoptosis and enhancing autophagic events by topiramate were engaged in ameliorating cadmium-induced testicular impairment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信