Nyla Ajaz, Anum Abbas, Rabia Afshan, Muhammad Irfan, Syed Haroon Khalid, Sajid Asghar, Muhammad Usman Munir, Waleed Y Rizg, Kamlah Ali Majrashi, Sameer Alshehri, Mohammed Alissa, Mohammed Majrashi, Deena M Bukhary, Ghulam Hussain, Fauzia Rehman, Ikram Ullah Khan
{"title":"羟丙基-β-环糊精接枝聚丙烯酸/聚乙烯基吡咯烷酮半互穿基质地塞米松磷酸钠的体内外评价","authors":"Nyla Ajaz, Anum Abbas, Rabia Afshan, Muhammad Irfan, Syed Haroon Khalid, Sajid Asghar, Muhammad Usman Munir, Waleed Y Rizg, Kamlah Ali Majrashi, Sameer Alshehri, Mohammed Alissa, Mohammed Majrashi, Deena M Bukhary, Ghulam Hussain, Fauzia Rehman, Ikram Ullah Khan","doi":"10.3390/ph15111399","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we fabricated semi-interpenetrating polymeric network (semi-IPN) of hydroxypropyl-β-cyclodextrin-<i>grafted</i>-poly(acrylic acid)/poly(vinyl pyrrolidone) (HP-β-CD-g-poly(AA)/PVP) by the free radical polymerization technique, intended for colon specific release of dexamethasone sodium phosphate (DSP). Different proportions of polyvinyl pyrrolidone (PVP), acrylic acid (AA), and hydroxypropyl-beta-cyclodextrin (HP-β-CD) were reacted along with ammonium persulphate (APS) as initiator and methylene-bis-acrylamide (MBA) as crosslinker to develop a hydrogel system with optimum swelling at distal intestinal pH. Initially, all formulations were screened for swelling behavior and AP-8 was chosen as optimum formulation. This formulation was capable of releasing a small amount of drug at acidic pH (1.2), while a maximum amount of drug was released at colonic pH (7.4) by the non-Fickian diffusion mechanism. Fourier transformed infrared spectroscopy (FTIR) revealed successful grafting of components and development of semi-IPN structure without any interaction with DSP. Thermogravimetric analysis (TGA) confirmed the thermal stability of developed semi-IPN. X-ray diffraction (XRD) revealed reduction in crystallinity of DSP upon loading in the hydrogel. The scanning electron microscopic (SEM) images revealed a rough and porous hydrogel surface. The toxicological evaluation of semi-IPN hydrogels confirmed their bio-safety and hemocompatibility. Therefore, the prepared hydrogels were pH sensitive, biocompatible, showed good swelling, mechanical properties, and were efficient in releasing the drug in the colonic environment. Therefore, AP-8 can be deemed as a potential carrier for targeted delivery of DSP to treat inflammatory bowel diseases.</p>","PeriodicalId":520747,"journal":{"name":"Pharmaceuticals (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692809/pdf/","citationCount":"2","resultStr":"{\"title\":\"In Vitro and In Vivo Evaluation of Hydroxypropyl-β-cyclodextrin-grafted-poly(acrylic acid)/poly(vinyl pyrrolidone) Semi-Interpenetrating Matrices of Dexamethasone Sodium Phosphate.\",\"authors\":\"Nyla Ajaz, Anum Abbas, Rabia Afshan, Muhammad Irfan, Syed Haroon Khalid, Sajid Asghar, Muhammad Usman Munir, Waleed Y Rizg, Kamlah Ali Majrashi, Sameer Alshehri, Mohammed Alissa, Mohammed Majrashi, Deena M Bukhary, Ghulam Hussain, Fauzia Rehman, Ikram Ullah Khan\",\"doi\":\"10.3390/ph15111399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we fabricated semi-interpenetrating polymeric network (semi-IPN) of hydroxypropyl-β-cyclodextrin-<i>grafted</i>-poly(acrylic acid)/poly(vinyl pyrrolidone) (HP-β-CD-g-poly(AA)/PVP) by the free radical polymerization technique, intended for colon specific release of dexamethasone sodium phosphate (DSP). Different proportions of polyvinyl pyrrolidone (PVP), acrylic acid (AA), and hydroxypropyl-beta-cyclodextrin (HP-β-CD) were reacted along with ammonium persulphate (APS) as initiator and methylene-bis-acrylamide (MBA) as crosslinker to develop a hydrogel system with optimum swelling at distal intestinal pH. Initially, all formulations were screened for swelling behavior and AP-8 was chosen as optimum formulation. This formulation was capable of releasing a small amount of drug at acidic pH (1.2), while a maximum amount of drug was released at colonic pH (7.4) by the non-Fickian diffusion mechanism. Fourier transformed infrared spectroscopy (FTIR) revealed successful grafting of components and development of semi-IPN structure without any interaction with DSP. Thermogravimetric analysis (TGA) confirmed the thermal stability of developed semi-IPN. X-ray diffraction (XRD) revealed reduction in crystallinity of DSP upon loading in the hydrogel. The scanning electron microscopic (SEM) images revealed a rough and porous hydrogel surface. The toxicological evaluation of semi-IPN hydrogels confirmed their bio-safety and hemocompatibility. Therefore, the prepared hydrogels were pH sensitive, biocompatible, showed good swelling, mechanical properties, and were efficient in releasing the drug in the colonic environment. Therefore, AP-8 can be deemed as a potential carrier for targeted delivery of DSP to treat inflammatory bowel diseases.</p>\",\"PeriodicalId\":520747,\"journal\":{\"name\":\"Pharmaceuticals (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692809/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals (Basel, Switzerland)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/ph15111399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals (Basel, Switzerland)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph15111399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In Vitro and In Vivo Evaluation of Hydroxypropyl-β-cyclodextrin-grafted-poly(acrylic acid)/poly(vinyl pyrrolidone) Semi-Interpenetrating Matrices of Dexamethasone Sodium Phosphate.
In this paper, we fabricated semi-interpenetrating polymeric network (semi-IPN) of hydroxypropyl-β-cyclodextrin-grafted-poly(acrylic acid)/poly(vinyl pyrrolidone) (HP-β-CD-g-poly(AA)/PVP) by the free radical polymerization technique, intended for colon specific release of dexamethasone sodium phosphate (DSP). Different proportions of polyvinyl pyrrolidone (PVP), acrylic acid (AA), and hydroxypropyl-beta-cyclodextrin (HP-β-CD) were reacted along with ammonium persulphate (APS) as initiator and methylene-bis-acrylamide (MBA) as crosslinker to develop a hydrogel system with optimum swelling at distal intestinal pH. Initially, all formulations were screened for swelling behavior and AP-8 was chosen as optimum formulation. This formulation was capable of releasing a small amount of drug at acidic pH (1.2), while a maximum amount of drug was released at colonic pH (7.4) by the non-Fickian diffusion mechanism. Fourier transformed infrared spectroscopy (FTIR) revealed successful grafting of components and development of semi-IPN structure without any interaction with DSP. Thermogravimetric analysis (TGA) confirmed the thermal stability of developed semi-IPN. X-ray diffraction (XRD) revealed reduction in crystallinity of DSP upon loading in the hydrogel. The scanning electron microscopic (SEM) images revealed a rough and porous hydrogel surface. The toxicological evaluation of semi-IPN hydrogels confirmed their bio-safety and hemocompatibility. Therefore, the prepared hydrogels were pH sensitive, biocompatible, showed good swelling, mechanical properties, and were efficient in releasing the drug in the colonic environment. Therefore, AP-8 can be deemed as a potential carrier for targeted delivery of DSP to treat inflammatory bowel diseases.