一元群的同伦理论及其衍生的局部化

IF 0.5 4区 数学
Joe Chuang, Julian Holstein, Andrey Lazarev
{"title":"一元群的同伦理论及其衍生的局部化","authors":"Joe Chuang,&nbsp;Julian Holstein,&nbsp;Andrey Lazarev","doi":"10.1007/s40062-021-00276-6","DOIUrl":null,"url":null,"abstract":"<p>We use derived localization of the bar and nerve constructions to provide simple proofs of a number of results in algebraic topology, both known and new. This includes a recent generalization of Adams’s cobar-construction to the non-simply connected case, and a new algebraic model for the homotopy theory of connected topological spaces as an <span>\\(\\infty \\)</span>-category of discrete monoids.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"16 2","pages":"175 - 189"},"PeriodicalIF":0.5000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-021-00276-6","citationCount":"7","resultStr":"{\"title\":\"Homotopy theory of monoids and derived localization\",\"authors\":\"Joe Chuang,&nbsp;Julian Holstein,&nbsp;Andrey Lazarev\",\"doi\":\"10.1007/s40062-021-00276-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use derived localization of the bar and nerve constructions to provide simple proofs of a number of results in algebraic topology, both known and new. This includes a recent generalization of Adams’s cobar-construction to the non-simply connected case, and a new algebraic model for the homotopy theory of connected topological spaces as an <span>\\\\(\\\\infty \\\\)</span>-category of discrete monoids.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"16 2\",\"pages\":\"175 - 189\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-021-00276-6\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-021-00276-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00276-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们使用杆和神经结构的衍生定位来提供一些代数拓扑结果的简单证明,包括已知的和新的。这包括最近对Adams的cobar构造在非单连通情况下的推广,以及作为离散一元群的\(\infty \) -范畴的连通拓扑空间的同伦理论的一个新的代数模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy theory of monoids and derived localization

We use derived localization of the bar and nerve constructions to provide simple proofs of a number of results in algebraic topology, both known and new. This includes a recent generalization of Adams’s cobar-construction to the non-simply connected case, and a new algebraic model for the homotopy theory of connected topological spaces as an \(\infty \)-category of discrete monoids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信