MS2Rescore:数据驱动的评分显着提高了免疫肽识别率。

Molecular & cellular proteomics : MCP Pub Date : 2022-08-01 Epub Date: 2022-07-06 DOI:10.1016/j.mcpro.2022.100266
Arthur Declercq, Robbin Bouwmeester, Aurélie Hirschler, Christine Carapito, Sven Degroeve, Lennart Martens, Ralf Gabriels
{"title":"MS2Rescore:数据驱动的评分显着提高了免疫肽识别率。","authors":"Arthur Declercq,&nbsp;Robbin Bouwmeester,&nbsp;Aurélie Hirschler,&nbsp;Christine Carapito,&nbsp;Sven Degroeve,&nbsp;Lennart Martens,&nbsp;Ralf Gabriels","doi":"10.1016/j.mcpro.2022.100266","DOIUrl":null,"url":null,"abstract":"<p><p>Immunopeptidomics aims to identify major histocompatibility complex (MHC)-presented peptides on almost all cells that can be used in anti-cancer vaccine development. However, existing immunopeptidomics data analysis pipelines suffer from the nontryptic nature of immunopeptides, complicating their identification. Previously, peak intensity predictions by MS<sup>2</sup>PIP and retention time predictions by DeepLC have been shown to improve tryptic peptide identifications when rescoring peptide-spectrum matches with Percolator. However, as MS<sup>2</sup>PIP was tailored toward tryptic peptides, we have here retrained MS<sup>2</sup>PIP to include nontryptic peptides. Interestingly, the new models not only greatly improve predictions for immunopeptides but also yield further improvements for tryptic peptides. We show that the integration of new MS<sup>2</sup>PIP models, DeepLC, and Percolator in one software package, MS<sup>2</sup>Rescore, increases spectrum identification rate and unique identified peptides with 46% and 36% compared to standard Percolator rescoring at 1% FDR. Moreover, MS<sup>2</sup>Rescore also outperforms the current state-of-the-art in immunopeptide-specific identification approaches. Altogether, MS<sup>2</sup>Rescore thus allows substantially improved identification of novel epitopes from existing immunopeptidomics workflows.</p>","PeriodicalId":519518,"journal":{"name":"Molecular & cellular proteomics : MCP","volume":" ","pages":"100266"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411678/pdf/","citationCount":"28","resultStr":"{\"title\":\"MS<sup>2</sup>Rescore: Data-Driven Rescoring Dramatically Boosts Immunopeptide Identification Rates.\",\"authors\":\"Arthur Declercq,&nbsp;Robbin Bouwmeester,&nbsp;Aurélie Hirschler,&nbsp;Christine Carapito,&nbsp;Sven Degroeve,&nbsp;Lennart Martens,&nbsp;Ralf Gabriels\",\"doi\":\"10.1016/j.mcpro.2022.100266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunopeptidomics aims to identify major histocompatibility complex (MHC)-presented peptides on almost all cells that can be used in anti-cancer vaccine development. However, existing immunopeptidomics data analysis pipelines suffer from the nontryptic nature of immunopeptides, complicating their identification. Previously, peak intensity predictions by MS<sup>2</sup>PIP and retention time predictions by DeepLC have been shown to improve tryptic peptide identifications when rescoring peptide-spectrum matches with Percolator. However, as MS<sup>2</sup>PIP was tailored toward tryptic peptides, we have here retrained MS<sup>2</sup>PIP to include nontryptic peptides. Interestingly, the new models not only greatly improve predictions for immunopeptides but also yield further improvements for tryptic peptides. We show that the integration of new MS<sup>2</sup>PIP models, DeepLC, and Percolator in one software package, MS<sup>2</sup>Rescore, increases spectrum identification rate and unique identified peptides with 46% and 36% compared to standard Percolator rescoring at 1% FDR. Moreover, MS<sup>2</sup>Rescore also outperforms the current state-of-the-art in immunopeptide-specific identification approaches. Altogether, MS<sup>2</sup>Rescore thus allows substantially improved identification of novel epitopes from existing immunopeptidomics workflows.</p>\",\"PeriodicalId\":519518,\"journal\":{\"name\":\"Molecular & cellular proteomics : MCP\",\"volume\":\" \",\"pages\":\"100266\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411678/pdf/\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & cellular proteomics : MCP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2022.100266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & cellular proteomics : MCP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2022.100266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

免疫肽组学旨在鉴定几乎所有细胞上可用于抗癌疫苗开发的主要组织相容性复合体(MHC)递呈肽。然而,现有的免疫肽组学数据分析管道受到免疫肽的非色氨酸性质的影响,使其鉴定变得复杂。先前,MS2PIP的峰强度预测和DeepLC的保留时间预测已被证明可以在与Percolator重新匹配肽谱时改善色氨酸鉴定。然而,由于MS2PIP是针对色氨酸肽量身定制的,我们在这里重新训练MS2PIP以包括非色氨酸肽。有趣的是,新模型不仅大大提高了对免疫肽的预测,而且还进一步提高了对色氨酸的预测。我们发现,将新的MS2PIP模型、DeepLC和Percolator集成在一个软件包MS2Rescore中,与标准Percolator在1% FDR下的评分相比,光谱识别率和唯一识别肽分别提高了46%和36%。此外,MS2Rescore还优于当前最先进的免疫肽特异性鉴定方法。总的来说,MS2Rescore因此可以从现有的免疫肽组学工作流程中大大改进新表位的鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MS2Rescore: Data-Driven Rescoring Dramatically Boosts Immunopeptide Identification Rates.

Immunopeptidomics aims to identify major histocompatibility complex (MHC)-presented peptides on almost all cells that can be used in anti-cancer vaccine development. However, existing immunopeptidomics data analysis pipelines suffer from the nontryptic nature of immunopeptides, complicating their identification. Previously, peak intensity predictions by MS2PIP and retention time predictions by DeepLC have been shown to improve tryptic peptide identifications when rescoring peptide-spectrum matches with Percolator. However, as MS2PIP was tailored toward tryptic peptides, we have here retrained MS2PIP to include nontryptic peptides. Interestingly, the new models not only greatly improve predictions for immunopeptides but also yield further improvements for tryptic peptides. We show that the integration of new MS2PIP models, DeepLC, and Percolator in one software package, MS2Rescore, increases spectrum identification rate and unique identified peptides with 46% and 36% compared to standard Percolator rescoring at 1% FDR. Moreover, MS2Rescore also outperforms the current state-of-the-art in immunopeptide-specific identification approaches. Altogether, MS2Rescore thus allows substantially improved identification of novel epitopes from existing immunopeptidomics workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信