David Schwickert, Marco Ruberti, Přemysl Kolorenč, Andreas Przystawik, Slawomir Skruszewicz, Malte Sumfleth, Markus Braune, Lars Bocklage, Luis Carretero, Marie Kristin Czwalinna, Dian Diaman, Stefan Düsterer, Marion Kuhlmann, Steffen Palutke, Ralf Röhlsberger, Juliane Rönsch-Schulenburg, Sven Toleikis, Sergey Usenko, Jens Viefhaus, Anton Vorobiov, Michael Martins, Detlef Kip, Vitali Averbukh, Jon P Marangos, Tim Laarmann
{"title":"用时间分辨俄歇电子能谱探测甘氨酸中的电荷诱导化学动力学。","authors":"David Schwickert, Marco Ruberti, Přemysl Kolorenč, Andreas Przystawik, Slawomir Skruszewicz, Malte Sumfleth, Markus Braune, Lars Bocklage, Luis Carretero, Marie Kristin Czwalinna, Dian Diaman, Stefan Düsterer, Marion Kuhlmann, Steffen Palutke, Ralf Röhlsberger, Juliane Rönsch-Schulenburg, Sven Toleikis, Sergey Usenko, Jens Viefhaus, Anton Vorobiov, Michael Martins, Detlef Kip, Vitali Averbukh, Jon P Marangos, Tim Laarmann","doi":"10.1063/4.0000165","DOIUrl":null,"url":null,"abstract":"<p><p>In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of <math><mrow><mo>(</mo> <mo>-</mo> <mn>0.3</mn> <mo>±</mo> <mn>0.1</mn> <mo>)</mo> <mi>π</mi> <mo>≤</mo> <mi>ϕ</mi> <mo>≤</mo> <mo>(</mo> <mn>0.1</mn> <mo>±</mo> <mn>0.2</mn> <mo>)</mo> <mi>π</mi></mrow> </math> and <math> <mrow> <msubsup><mrow><mn>18.2</mn></mrow> <mrow><mo>-</mo> <mn>1.4</mn></mrow> <mrow><mo>+</mo> <mn>1.7</mn></mrow> </msubsup> <mo>≤</mo> <mi>T</mi> <mo>≤</mo> <msubsup><mrow><mn>23.9</mn></mrow> <mrow><mo>-</mo> <mn>1.1</mn></mrow> <mrow><mo>+</mo> <mn>1.2</mn></mrow> </msubsup> </mrow> </math> fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646253/pdf/","citationCount":"1","resultStr":"{\"title\":\"Charge-induced chemical dynamics in glycine probed with time-resolved Auger electron spectroscopy.\",\"authors\":\"David Schwickert, Marco Ruberti, Přemysl Kolorenč, Andreas Przystawik, Slawomir Skruszewicz, Malte Sumfleth, Markus Braune, Lars Bocklage, Luis Carretero, Marie Kristin Czwalinna, Dian Diaman, Stefan Düsterer, Marion Kuhlmann, Steffen Palutke, Ralf Röhlsberger, Juliane Rönsch-Schulenburg, Sven Toleikis, Sergey Usenko, Jens Viefhaus, Anton Vorobiov, Michael Martins, Detlef Kip, Vitali Averbukh, Jon P Marangos, Tim Laarmann\",\"doi\":\"10.1063/4.0000165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of <math><mrow><mo>(</mo> <mo>-</mo> <mn>0.3</mn> <mo>±</mo> <mn>0.1</mn> <mo>)</mo> <mi>π</mi> <mo>≤</mo> <mi>ϕ</mi> <mo>≤</mo> <mo>(</mo> <mn>0.1</mn> <mo>±</mo> <mn>0.2</mn> <mo>)</mo> <mi>π</mi></mrow> </math> and <math> <mrow> <msubsup><mrow><mn>18.2</mn></mrow> <mrow><mo>-</mo> <mn>1.4</mn></mrow> <mrow><mo>+</mo> <mn>1.7</mn></mrow> </msubsup> <mo>≤</mo> <mi>T</mi> <mo>≤</mo> <msubsup><mrow><mn>23.9</mn></mrow> <mrow><mo>-</mo> <mn>1.1</mn></mrow> <mrow><mo>+</mo> <mn>1.2</mn></mrow> </msubsup> </mrow> </math> fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646253/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000165\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000165","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Charge-induced chemical dynamics in glycine probed with time-resolved Auger electron spectroscopy.
In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of and fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.