基于灵活正则化混合模型的无监督视频分割算法。

Claire Launay, Jonathan Vacher, Ruben Coen-Cagli
{"title":"基于灵活正则化混合模型的无监督视频分割算法。","authors":"Claire Launay, Jonathan Vacher, Ruben Coen-Cagli","doi":"10.1109/icip46576.2022.9897691","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a family of probabilistic segmentation algorithms for videos that rely on a generative model capturing static and dynamic natural image statistics. Our framework adopts flexibly regularized mixture models (FlexMM) [1], an efficient method to combine mixture distributions across different data sources. FlexMMs of Student-t distributions successfully segment static natural images, through uncertainty-based information sharing between hidden layers of CNNs. We further extend this approach to videos and exploit FlexMM to propagate segment labels across space and time. We show that temporal propagation improves temporal consistency of segmentation, reproducing qualitatively a key aspect of human perceptual grouping. Besides, Student-t distributions can capture statistics of optical flows of natural movies, which represent apparent motion in the video. Integrating these motion cues in our temporal FlexMM further enhances the segmentation of each frame of natural movies. Our probabilistic dynamic segmentation algorithms thus provide a new framework to study uncertainty in human dynamic perceptual segmentation.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":" ","pages":"4073-4077"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670685/pdf/nihms-1849113.pdf","citationCount":"0","resultStr":"{\"title\":\"UNSUPERVISED VIDEO SEGMENTATION ALGORITHMS BASED ON FLEXIBLY REGULARIZED MIXTURE MODELS.\",\"authors\":\"Claire Launay, Jonathan Vacher, Ruben Coen-Cagli\",\"doi\":\"10.1109/icip46576.2022.9897691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a family of probabilistic segmentation algorithms for videos that rely on a generative model capturing static and dynamic natural image statistics. Our framework adopts flexibly regularized mixture models (FlexMM) [1], an efficient method to combine mixture distributions across different data sources. FlexMMs of Student-t distributions successfully segment static natural images, through uncertainty-based information sharing between hidden layers of CNNs. We further extend this approach to videos and exploit FlexMM to propagate segment labels across space and time. We show that temporal propagation improves temporal consistency of segmentation, reproducing qualitatively a key aspect of human perceptual grouping. Besides, Student-t distributions can capture statistics of optical flows of natural movies, which represent apparent motion in the video. Integrating these motion cues in our temporal FlexMM further enhances the segmentation of each frame of natural movies. Our probabilistic dynamic segmentation algorithms thus provide a new framework to study uncertainty in human dynamic perceptual segmentation.</p>\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\" \",\"pages\":\"4073-4077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670685/pdf/nihms-1849113.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icip46576.2022.9897691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip46576.2022.9897691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一系列视频概率分割算法,这些算法依赖于捕捉静态和动态自然图像统计数据的生成模型。我们的框架采用了灵活正则化混合模型(FlexMM)[1],这是一种结合不同数据源混合分布的高效方法。通过 CNN 隐藏层之间基于不确定性的信息共享,Student-t 分布的 FlexMM 成功地分割了静态自然图像。我们进一步将这种方法扩展到视频,并利用 FlexMM 跨时空传播分割标签。我们的研究表明,时间传播提高了分割的时间一致性,从质量上再现了人类感知分组的一个关键方面。此外,Student-t 分布可以捕捉到自然电影的光流统计,这代表了视频中的明显运动。将这些运动线索整合到我们的时间 FlexMM 中,可进一步增强对自然电影每帧画面的分割。因此,我们的概率动态分割算法为研究人类动态感知分割的不确定性提供了一个新的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNSUPERVISED VIDEO SEGMENTATION ALGORITHMS BASED ON FLEXIBLY REGULARIZED MIXTURE MODELS.

We propose a family of probabilistic segmentation algorithms for videos that rely on a generative model capturing static and dynamic natural image statistics. Our framework adopts flexibly regularized mixture models (FlexMM) [1], an efficient method to combine mixture distributions across different data sources. FlexMMs of Student-t distributions successfully segment static natural images, through uncertainty-based information sharing between hidden layers of CNNs. We further extend this approach to videos and exploit FlexMM to propagate segment labels across space and time. We show that temporal propagation improves temporal consistency of segmentation, reproducing qualitatively a key aspect of human perceptual grouping. Besides, Student-t distributions can capture statistics of optical flows of natural movies, which represent apparent motion in the video. Integrating these motion cues in our temporal FlexMM further enhances the segmentation of each frame of natural movies. Our probabilistic dynamic segmentation algorithms thus provide a new framework to study uncertainty in human dynamic perceptual segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信