收缩估计应用于半非参数回归模型。

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Hossein Zareamoghaddam, Syed E Ahmed, Serge B Provost
{"title":"收缩估计应用于半非参数回归模型。","authors":"Hossein Zareamoghaddam,&nbsp;Syed E Ahmed,&nbsp;Serge B Provost","doi":"10.1515/ijb-2018-0109","DOIUrl":null,"url":null,"abstract":"<p><p>Stein-type shrinkage techniques are applied to the parametric components of a semi-nonparametric regression model recently proposed by (Ma et al. 2015: 285-303). On the basis of an uncertain prior information (restrictions) about the parameters of interest, shrinkage techniques are shown to improve the accuracy of the model. The effectiveness of the proposed estimators are corroborated by a simulation study.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":"23-38"},"PeriodicalIF":1.2000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0109","citationCount":"0","resultStr":"{\"title\":\"Shrinkage estimation applied to a semi-nonparametric regression model.\",\"authors\":\"Hossein Zareamoghaddam,&nbsp;Syed E Ahmed,&nbsp;Serge B Provost\",\"doi\":\"10.1515/ijb-2018-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stein-type shrinkage techniques are applied to the parametric components of a semi-nonparametric regression model recently proposed by (Ma et al. 2015: 285-303). On the basis of an uncertain prior information (restrictions) about the parameters of interest, shrinkage techniques are shown to improve the accuracy of the model. The effectiveness of the proposed estimators are corroborated by a simulation study.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\" \",\"pages\":\"23-38\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2018-0109\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2018-0109\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0109","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

stein型收缩技术应用于(Ma等人,2015:285-303)最近提出的半非参数回归模型的参数成分。在不确定的先验信息(限制)的基础上,收缩技术被证明可以提高模型的准确性。仿真研究证实了所提估计器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shrinkage estimation applied to a semi-nonparametric regression model.

Stein-type shrinkage techniques are applied to the parametric components of a semi-nonparametric regression model recently proposed by (Ma et al. 2015: 285-303). On the basis of an uncertain prior information (restrictions) about the parameters of interest, shrinkage techniques are shown to improve the accuracy of the model. The effectiveness of the proposed estimators are corroborated by a simulation study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信