用于传感生物数量的量子纳米金刚石:角度、温度和导热性。

Biophysics and Physicobiology Pub Date : 2022-09-08 eCollection Date: 2022-01-01 DOI:10.2142/biophysico.bppb-v19.0034
Shingo Sotoma, Hirotaka Okita, Shunsuke Chuma, Yoshie Harada
{"title":"用于传感生物数量的量子纳米金刚石:角度、温度和导热性。","authors":"Shingo Sotoma,&nbsp;Hirotaka Okita,&nbsp;Shunsuke Chuma,&nbsp;Yoshie Harada","doi":"10.2142/biophysico.bppb-v19.0034","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring physical quantities in the nanometric region inside single cells is of great importance for understanding cellular activity. Thus, the development of biocompatible, sensitive, and reliable nanobiosensors is essential for progress in biological research. Diamond nanoparticles containing nitrogen-vacancy centers (NVCs), referred to as fluorescent nanodiamonds (FNDs), have recently emerged as the sensors that show great promise for ultrasensitive nanosensing of physical quantities. FNDs emit stable fluorescence without photobleaching. Additionally, their distinctive magneto-optical properties enable an optical readout of the quantum states of the electron spin in NVC under ambient conditions. These properties enable the quantitative sensing of physical parameters (temperature, magnetic field, electric field, pH, etc.) in the vicinity of an FND; hence, FNDs are often described as \"quantum sensors\". In this review, recent advancements in biosensing applications of FNDs are summarized. First, the principles of orientation and temperature sensing using FND quantum sensors are explained. Next, we introduce surface coating techniques indispensable for controlling the physicochemical properties of FNDs. The achievements of practical biological sensing using surface-coated FNDs, including orientation, temperature, and thermal conductivity, are then highlighted. Finally, the advantages, challenges, and perspectives of the quantum sensing of FND are discussed. This review article is an extended version of the Japanese article, In Situ Measurement of Intracellular Thermal Conductivity Using Diamond Nanoparticle, published in SEIBUTSU BUTSURI Vol. 62, p. 122-124 (2022).</p>","PeriodicalId":8976,"journal":{"name":"Biophysics and Physicobiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9c/b4/19_e190034.PMC9592573.pdf","citationCount":"1","resultStr":"{\"title\":\"Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity.\",\"authors\":\"Shingo Sotoma,&nbsp;Hirotaka Okita,&nbsp;Shunsuke Chuma,&nbsp;Yoshie Harada\",\"doi\":\"10.2142/biophysico.bppb-v19.0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measuring physical quantities in the nanometric region inside single cells is of great importance for understanding cellular activity. Thus, the development of biocompatible, sensitive, and reliable nanobiosensors is essential for progress in biological research. Diamond nanoparticles containing nitrogen-vacancy centers (NVCs), referred to as fluorescent nanodiamonds (FNDs), have recently emerged as the sensors that show great promise for ultrasensitive nanosensing of physical quantities. FNDs emit stable fluorescence without photobleaching. Additionally, their distinctive magneto-optical properties enable an optical readout of the quantum states of the electron spin in NVC under ambient conditions. These properties enable the quantitative sensing of physical parameters (temperature, magnetic field, electric field, pH, etc.) in the vicinity of an FND; hence, FNDs are often described as \\\"quantum sensors\\\". In this review, recent advancements in biosensing applications of FNDs are summarized. First, the principles of orientation and temperature sensing using FND quantum sensors are explained. Next, we introduce surface coating techniques indispensable for controlling the physicochemical properties of FNDs. The achievements of practical biological sensing using surface-coated FNDs, including orientation, temperature, and thermal conductivity, are then highlighted. Finally, the advantages, challenges, and perspectives of the quantum sensing of FND are discussed. This review article is an extended version of the Japanese article, In Situ Measurement of Intracellular Thermal Conductivity Using Diamond Nanoparticle, published in SEIBUTSU BUTSURI Vol. 62, p. 122-124 (2022).</p>\",\"PeriodicalId\":8976,\"journal\":{\"name\":\"Biophysics and Physicobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9c/b4/19_e190034.PMC9592573.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics and Physicobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2142/biophysico.bppb-v19.0034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and Physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v19.0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

测量单细胞内纳米区域的物理量对于了解细胞活动具有重要意义。因此,开发具有生物相容性、敏感性和可靠性的纳米生物传感器对生物研究的进步至关重要。含有氮空位中心(nvc)的纳米金刚石被称为荧光纳米金刚石(FNDs),近年来作为一种传感器出现,在物理量的超灵敏纳米传感方面显示出巨大的前景。fnd发出稳定的荧光,不发生光漂白。此外,它们独特的磁光特性使其能够在环境条件下光学读出NVC中电子自旋的量子态。这些特性使FND附近的物理参数(温度、磁场、电场、pH等)的定量传感成为可能;因此,fnd通常被描述为“量子传感器”。本文综述了近年来FNDs在生物传感领域的研究进展。首先,阐述了FND量子传感器的取向和温度传感原理。其次,我们介绍了控制fnd的物理化学性质必不可少的表面涂层技术。然后强调了使用表面涂层fnd的实际生物传感的成就,包括取向,温度和导热性。最后,讨论了FND量子传感的优势、挑战和前景。这篇综述文章是日本文章《使用金刚石纳米颗粒原位测量细胞内热导率》的扩展版,发表在SEIBUTSU BUTSURI Vol. 62, p. 122-124(2022)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity.

Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity.

Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity.

Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity.

Measuring physical quantities in the nanometric region inside single cells is of great importance for understanding cellular activity. Thus, the development of biocompatible, sensitive, and reliable nanobiosensors is essential for progress in biological research. Diamond nanoparticles containing nitrogen-vacancy centers (NVCs), referred to as fluorescent nanodiamonds (FNDs), have recently emerged as the sensors that show great promise for ultrasensitive nanosensing of physical quantities. FNDs emit stable fluorescence without photobleaching. Additionally, their distinctive magneto-optical properties enable an optical readout of the quantum states of the electron spin in NVC under ambient conditions. These properties enable the quantitative sensing of physical parameters (temperature, magnetic field, electric field, pH, etc.) in the vicinity of an FND; hence, FNDs are often described as "quantum sensors". In this review, recent advancements in biosensing applications of FNDs are summarized. First, the principles of orientation and temperature sensing using FND quantum sensors are explained. Next, we introduce surface coating techniques indispensable for controlling the physicochemical properties of FNDs. The achievements of practical biological sensing using surface-coated FNDs, including orientation, temperature, and thermal conductivity, are then highlighted. Finally, the advantages, challenges, and perspectives of the quantum sensing of FND are discussed. This review article is an extended version of the Japanese article, In Situ Measurement of Intracellular Thermal Conductivity Using Diamond Nanoparticle, published in SEIBUTSU BUTSURI Vol. 62, p. 122-124 (2022).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信