Yingying Wei, Yuduan Gao, Lin Chen, Qiang Li, Jinglei Du, Dongming Wang, Fanggang Ren, Xuguang Liu, Yongzhen Yang
{"title":"基于碳点的高尔基体靶向成像靶向单元继承策略","authors":"Yingying Wei, Yuduan Gao, Lin Chen, Qiang Li, Jinglei Du, Dongming Wang, Fanggang Ren, Xuguang Liu, Yongzhen Yang","doi":"10.1007/s11706-023-0627-y","DOIUrl":null,"url":null,"abstract":"<div><p>The Golgi apparatus is one of the important organelles, where the final processing and packaging of cellular secretions (such as proteins) are completed. The disorder of Golgi apparatus structure and function will induce many diseases. Therefore, monitoring the morphological structure of Golgi apparatus is crucial for the diagnosis and treatment of relevant diseases. In order to achieve Golgi apparatus-targeting imaging, the strategy of targeting unit inheritance was adopted and carbon dots (CDs) with Golgi apparatus-targeting ability were synthesized by one-step hydrothermal method with L-ascorbic acid with high reactivity and reducibility as the carbon source and L-cysteine as the targeting unit. CDs have a certain amount of cysteine residues on their surface, and have excitation dependence, satisfactory fluorescence and cysteine residues stability and low toxicity. As an imaging agent, CDs can be used for targeting imaging of Golgi apparatus.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Carbon dots based on targeting unit inheritance strategy for Golgi apparatus-targeting imaging\",\"authors\":\"Yingying Wei, Yuduan Gao, Lin Chen, Qiang Li, Jinglei Du, Dongming Wang, Fanggang Ren, Xuguang Liu, Yongzhen Yang\",\"doi\":\"10.1007/s11706-023-0627-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Golgi apparatus is one of the important organelles, where the final processing and packaging of cellular secretions (such as proteins) are completed. The disorder of Golgi apparatus structure and function will induce many diseases. Therefore, monitoring the morphological structure of Golgi apparatus is crucial for the diagnosis and treatment of relevant diseases. In order to achieve Golgi apparatus-targeting imaging, the strategy of targeting unit inheritance was adopted and carbon dots (CDs) with Golgi apparatus-targeting ability were synthesized by one-step hydrothermal method with L-ascorbic acid with high reactivity and reducibility as the carbon source and L-cysteine as the targeting unit. CDs have a certain amount of cysteine residues on their surface, and have excitation dependence, satisfactory fluorescence and cysteine residues stability and low toxicity. As an imaging agent, CDs can be used for targeting imaging of Golgi apparatus.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-023-0627-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0627-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Carbon dots based on targeting unit inheritance strategy for Golgi apparatus-targeting imaging
The Golgi apparatus is one of the important organelles, where the final processing and packaging of cellular secretions (such as proteins) are completed. The disorder of Golgi apparatus structure and function will induce many diseases. Therefore, monitoring the morphological structure of Golgi apparatus is crucial for the diagnosis and treatment of relevant diseases. In order to achieve Golgi apparatus-targeting imaging, the strategy of targeting unit inheritance was adopted and carbon dots (CDs) with Golgi apparatus-targeting ability were synthesized by one-step hydrothermal method with L-ascorbic acid with high reactivity and reducibility as the carbon source and L-cysteine as the targeting unit. CDs have a certain amount of cysteine residues on their surface, and have excitation dependence, satisfactory fluorescence and cysteine residues stability and low toxicity. As an imaging agent, CDs can be used for targeting imaging of Golgi apparatus.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.