通过提升网络回归的标量。

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY
Annals of Applied Statistics Pub Date : 2022-12-01 Epub Date: 2022-09-26 DOI:10.1214/22-aoas1612
Emily L Morris, Kevin He, Jian Kang
{"title":"通过提升网络回归的标量。","authors":"Emily L Morris, Kevin He, Jian Kang","doi":"10.1214/22-aoas1612","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimaging studies have a growing interest in learning the association between the individual brain connectivity networks and their clinical characteristics. It is also of great interest to identify the sub brain networks as biomarkers to predict the clinical symptoms, such as disease status, potentially providing insight on neuropathology. This motivates the need for developing a new type of regression model where the response variable is scalar, and predictors are networks that are typically represented as adjacent matrices or weighted adjacent matrices, to which we refer as scalar-on-network regression. In this work, we develop a new boosting method for model fitting with sub-network markers selection. Our approach, as opposed to group lasso or other existing regularization methods, is essentially a gradient descent algorithm leveraging known network structure. We demonstrate the utility of our methods via simulation studies and analysis of the resting-state fMRI data in a cognitive developmental cohort study.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624505/pdf/nihms-1815340.pdf","citationCount":"0","resultStr":"{\"title\":\"SCALAR ON NETWORK REGRESSION VIA BOOSTING.\",\"authors\":\"Emily L Morris, Kevin He, Jian Kang\",\"doi\":\"10.1214/22-aoas1612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroimaging studies have a growing interest in learning the association between the individual brain connectivity networks and their clinical characteristics. It is also of great interest to identify the sub brain networks as biomarkers to predict the clinical symptoms, such as disease status, potentially providing insight on neuropathology. This motivates the need for developing a new type of regression model where the response variable is scalar, and predictors are networks that are typically represented as adjacent matrices or weighted adjacent matrices, to which we refer as scalar-on-network regression. In this work, we develop a new boosting method for model fitting with sub-network markers selection. Our approach, as opposed to group lasso or other existing regularization methods, is essentially a gradient descent algorithm leveraging known network structure. We demonstrate the utility of our methods via simulation studies and analysis of the resting-state fMRI data in a cognitive developmental cohort study.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624505/pdf/nihms-1815340.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aoas1612\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aoas1612","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

神经影像学研究对了解单个大脑连接网络与其临床特征之间的关联越来越感兴趣。此外,将亚脑网络识别为生物标志物来预测临床症状(如疾病状态)也是非常有意义的,这有可能为神经病理学提供洞察力。这就促使我们需要开发一种新型回归模型,其中响应变量是标量,预测因子是网络,通常表示为相邻矩阵或加权相邻矩阵,我们称之为标量-网络回归。在这项工作中,我们开发了一种新的提升方法,用于子网络标记选择的模型拟合。与分组套索或其他现有的正则化方法不同,我们的方法本质上是一种利用已知网络结构的梯度下降算法。我们通过模拟研究和对认知发展队列研究中静息态 fMRI 数据的分析,证明了我们方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCALAR ON NETWORK REGRESSION VIA BOOSTING.

Neuroimaging studies have a growing interest in learning the association between the individual brain connectivity networks and their clinical characteristics. It is also of great interest to identify the sub brain networks as biomarkers to predict the clinical symptoms, such as disease status, potentially providing insight on neuropathology. This motivates the need for developing a new type of regression model where the response variable is scalar, and predictors are networks that are typically represented as adjacent matrices or weighted adjacent matrices, to which we refer as scalar-on-network regression. In this work, we develop a new boosting method for model fitting with sub-network markers selection. Our approach, as opposed to group lasso or other existing regularization methods, is essentially a gradient descent algorithm leveraging known network structure. We demonstrate the utility of our methods via simulation studies and analysis of the resting-state fMRI data in a cognitive developmental cohort study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信