以Twitter数据为中心的方法评估通勤者对印度德里地铁的看法的影响。

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Computational urban science Pub Date : 2022-01-01 Epub Date: 2022-10-22 DOI:10.1007/s43762-022-00066-7
Apoorv Agrawal, Paulose N Kuriakose
{"title":"以Twitter数据为中心的方法评估通勤者对印度德里地铁的看法的影响。","authors":"Apoorv Agrawal,&nbsp;Paulose N Kuriakose","doi":"10.1007/s43762-022-00066-7","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to the onset of the new media age, the idea of e-public participation has proven to be a great complement to the limitations of the conventional public participation approach. In this respect, location-based social networks (LBSN) data can prove to be a game shift in this digital era to offer an insight into the commuter perception of service delivery. The paper aims to investigate the potential of using Twitter data to assess commuters' perceptions of the Delhi metro, India, by presenting a comprehensive methodology for extracting, processing, and interpreting the data. The study extracts Twitter data from the official handle of the Delhi metro, performs semantic and sentiment analysis to comprehend commuters' concerns and assesses commuters' sentiments on the predicted concerns. The paper outlines that the current depth of Twitter data is more inclined to instantaneous responses to grievances encountered. Moreover, the analysis presents that for the data extraction period, the topics 'Ride Safety' and 'Crowding' have the lowest scores, while 'Personnel Attitude' and 'Customer Interface' have the highest scores. Further, the paper highlights insights gleaned from Twitter data in addition to the aspects included in the conventional satisfaction survey. The paper concludes by outlining the opportunities and limitations of LBSN analytics for effective public transportation decision-making in India.</p>","PeriodicalId":72667,"journal":{"name":"Computational urban science","volume":" ","pages":"38"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589671/pdf/","citationCount":"1","resultStr":"{\"title\":\"Implications of a Twitter data-centred methodology for assessing commuters' perceptions of the Delhi metro in India.\",\"authors\":\"Apoorv Agrawal,&nbsp;Paulose N Kuriakose\",\"doi\":\"10.1007/s43762-022-00066-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Owing to the onset of the new media age, the idea of e-public participation has proven to be a great complement to the limitations of the conventional public participation approach. In this respect, location-based social networks (LBSN) data can prove to be a game shift in this digital era to offer an insight into the commuter perception of service delivery. The paper aims to investigate the potential of using Twitter data to assess commuters' perceptions of the Delhi metro, India, by presenting a comprehensive methodology for extracting, processing, and interpreting the data. The study extracts Twitter data from the official handle of the Delhi metro, performs semantic and sentiment analysis to comprehend commuters' concerns and assesses commuters' sentiments on the predicted concerns. The paper outlines that the current depth of Twitter data is more inclined to instantaneous responses to grievances encountered. Moreover, the analysis presents that for the data extraction period, the topics 'Ride Safety' and 'Crowding' have the lowest scores, while 'Personnel Attitude' and 'Customer Interface' have the highest scores. Further, the paper highlights insights gleaned from Twitter data in addition to the aspects included in the conventional satisfaction survey. The paper concludes by outlining the opportunities and limitations of LBSN analytics for effective public transportation decision-making in India.</p>\",\"PeriodicalId\":72667,\"journal\":{\"name\":\"Computational urban science\",\"volume\":\" \",\"pages\":\"38\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589671/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational urban science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43762-022-00066-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational urban science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43762-022-00066-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

由于新媒体时代的到来,电子公众参与的理念已经被证明是对传统公众参与方式局限性的一个很好的补充。在这方面,基于位置的社交网络(LBSN)数据可以证明是这个数字时代的一个游戏转变,它可以洞察通勤者对服务交付的看法。本文旨在通过提出一种提取、处理和解释数据的综合方法,研究利用Twitter数据评估通勤者对印度德里地铁的看法的潜力。该研究从德里地铁的官方处理中提取Twitter数据,进行语义和情感分析,以了解通勤者的担忧,并评估通勤者对预测担忧的情绪。该论文概述了目前Twitter数据的深度更倾向于对遇到的不满的即时反应。此外,分析表明,在数据提取期间,主题“乘坐安全”和“拥挤”得分最低,而“人员态度”和“客户界面”得分最高。此外,除了传统满意度调查中包含的方面外,本文还强调了从Twitter数据中收集到的见解。本文最后概述了LBSN分析在印度有效的公共交通决策的机会和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Implications of a Twitter data-centred methodology for assessing commuters' perceptions of the Delhi metro in India.

Implications of a Twitter data-centred methodology for assessing commuters' perceptions of the Delhi metro in India.

Implications of a Twitter data-centred methodology for assessing commuters' perceptions of the Delhi metro in India.

Implications of a Twitter data-centred methodology for assessing commuters' perceptions of the Delhi metro in India.

Owing to the onset of the new media age, the idea of e-public participation has proven to be a great complement to the limitations of the conventional public participation approach. In this respect, location-based social networks (LBSN) data can prove to be a game shift in this digital era to offer an insight into the commuter perception of service delivery. The paper aims to investigate the potential of using Twitter data to assess commuters' perceptions of the Delhi metro, India, by presenting a comprehensive methodology for extracting, processing, and interpreting the data. The study extracts Twitter data from the official handle of the Delhi metro, performs semantic and sentiment analysis to comprehend commuters' concerns and assesses commuters' sentiments on the predicted concerns. The paper outlines that the current depth of Twitter data is more inclined to instantaneous responses to grievances encountered. Moreover, the analysis presents that for the data extraction period, the topics 'Ride Safety' and 'Crowding' have the lowest scores, while 'Personnel Attitude' and 'Customer Interface' have the highest scores. Further, the paper highlights insights gleaned from Twitter data in addition to the aspects included in the conventional satisfaction survey. The paper concludes by outlining the opportunities and limitations of LBSN analytics for effective public transportation decision-making in India.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信