{"title":"我们还没有准备好:最先进的疾病命名实体识别器的局限性。","authors":"Lisa Kühnel, Juliane Fluck","doi":"10.1186/s13326-022-00280-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intense research has been done in the area of biomedical natural language processing. Since the breakthrough of transfer learning-based methods, BERT models are used in a variety of biomedical and clinical applications. For the available data sets, these models show excellent results - partly exceeding the inter-annotator agreements. However, biomedical named entity recognition applied on COVID-19 preprints shows a performance drop compared to the results on test data. The question arises how well trained models are able to predict on completely new data, i.e. to generalize.</p><p><strong>Results: </strong>Based on the example of disease named entity recognition, we investigate the robustness of different machine learning-based methods - thereof transfer learning - and show that current state-of-the-art methods work well for a given training and the corresponding test set but experience a significant lack of generalization when applying to new data.</p><p><strong>Conclusions: </strong>We argue that there is a need for larger annotated data sets for training and testing. Therefore, we foresee the curation of further data sets and, moreover, the investigation of continual learning processes for machine learning-based models.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"26"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612606/pdf/","citationCount":"5","resultStr":"{\"title\":\"We are not ready yet: limitations of state-of-the-art disease named entity recognizers.\",\"authors\":\"Lisa Kühnel, Juliane Fluck\",\"doi\":\"10.1186/s13326-022-00280-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Intense research has been done in the area of biomedical natural language processing. Since the breakthrough of transfer learning-based methods, BERT models are used in a variety of biomedical and clinical applications. For the available data sets, these models show excellent results - partly exceeding the inter-annotator agreements. However, biomedical named entity recognition applied on COVID-19 preprints shows a performance drop compared to the results on test data. The question arises how well trained models are able to predict on completely new data, i.e. to generalize.</p><p><strong>Results: </strong>Based on the example of disease named entity recognition, we investigate the robustness of different machine learning-based methods - thereof transfer learning - and show that current state-of-the-art methods work well for a given training and the corresponding test set but experience a significant lack of generalization when applying to new data.</p><p><strong>Conclusions: </strong>We argue that there is a need for larger annotated data sets for training and testing. Therefore, we foresee the curation of further data sets and, moreover, the investigation of continual learning processes for machine learning-based models.</p>\",\"PeriodicalId\":15055,\"journal\":{\"name\":\"Journal of Biomedical Semantics\",\"volume\":\" \",\"pages\":\"26\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612606/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Semantics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13326-022-00280-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-022-00280-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
We are not ready yet: limitations of state-of-the-art disease named entity recognizers.
Background: Intense research has been done in the area of biomedical natural language processing. Since the breakthrough of transfer learning-based methods, BERT models are used in a variety of biomedical and clinical applications. For the available data sets, these models show excellent results - partly exceeding the inter-annotator agreements. However, biomedical named entity recognition applied on COVID-19 preprints shows a performance drop compared to the results on test data. The question arises how well trained models are able to predict on completely new data, i.e. to generalize.
Results: Based on the example of disease named entity recognition, we investigate the robustness of different machine learning-based methods - thereof transfer learning - and show that current state-of-the-art methods work well for a given training and the corresponding test set but experience a significant lack of generalization when applying to new data.
Conclusions: We argue that there is a need for larger annotated data sets for training and testing. Therefore, we foresee the curation of further data sets and, moreover, the investigation of continual learning processes for machine learning-based models.
期刊介绍:
Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas:
Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability.
Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.