Maria Siemionow, Sonia Brodowska, Paulina Langa, Kristina Zalants, Katarzyna Kozlowska, Wictoria Grau-Kazmierczak, Ahlke Heydemann
{"title":"人肌营养不良蛋白表达嵌合细胞治疗杜氏肌营养不良模型后的长期生物分布和安全性","authors":"Maria Siemionow, Sonia Brodowska, Paulina Langa, Kristina Zalants, Katarzyna Kozlowska, Wictoria Grau-Kazmierczak, Ahlke Heydemann","doi":"10.1007/s00005-022-00656-7","DOIUrl":null,"url":null,"abstract":"<div><p>Duchenne muscular dystrophy (DMD) is a lethal disease caused by X-linked mutations in the dystrophin gene. Dystrophin deficiency results in progressive degeneration of cardiac, respiratory and skeletal muscles leading to premature death due to cardiopulmonary complications. Currently, no cure exists for DMD. Based on our previous reports confirming a protective effect of human dystrophin expressing chimeric (DEC) cell therapy on cardiac, respiratory, and skeletal muscle function after intraosseous administration, now we assessed long-term safety and biodistribution of human DEC therapy for potential clinical applications in DMD patients. Safety of different DEC doses (1 × 10<sup>6</sup> and 5 × 10<sup>6</sup>) was assessed at 180 days after systemic-intraosseous administration to <i>mdx/scid</i> mice, a model of DMD. Assessments included: single cell gel electrophoresis assay (COMET assay) to confirm lack of genetic toxicology, magnetic resonance imaging (MRI) for tumorigenicity, and body, muscle and organ weights. Human DEC biodistribution to the target (heart, diaphragm, gastrocnemius muscle) and non-target (blood, bone marrow, lung, liver, spleen) organs was detected by flow cytometry assessment of HLA-ABC markers. Human origin of dystrophin was verified by co-localization of dystrophin and human spectrin by immunofluorescence. No complications were observed after intraosseous transplant of human DEC. COMET assay of donors and fused DEC cells confirmed lack of DNA damage. Biodistribution analysis of HLA-ABC expression revealed dose-dependent presence of human DEC cells in target organs, whereas negligible presence was detected in non-target organs. Human origin of dystrophin in the heart, diaphragm and gastrocnemius muscle was confirmed by co-localization of dystrophin expression with human spectrin. MRI revealed no evidence of tumor formation. Body mass and muscle and organ weights were stable and comparable to vehicle controls, further confirming DEC safety at 180 days post- transplant. This preclinical study confirmed long-term local and systemic safety of human DEC therapy at 180 days after intraosseous administration. Thus, DEC can be considered as a novel myoblast based advanced therapy medicinal product for DMD patients.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"70 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00005-022-00656-7.pdf","citationCount":"4","resultStr":"{\"title\":\"Long-Term Biodistribution and Safety of Human Dystrophin Expressing Chimeric Cell Therapy After Systemic-Intraosseous Administration to Duchenne Muscular Dystrophy Model\",\"authors\":\"Maria Siemionow, Sonia Brodowska, Paulina Langa, Kristina Zalants, Katarzyna Kozlowska, Wictoria Grau-Kazmierczak, Ahlke Heydemann\",\"doi\":\"10.1007/s00005-022-00656-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Duchenne muscular dystrophy (DMD) is a lethal disease caused by X-linked mutations in the dystrophin gene. Dystrophin deficiency results in progressive degeneration of cardiac, respiratory and skeletal muscles leading to premature death due to cardiopulmonary complications. Currently, no cure exists for DMD. Based on our previous reports confirming a protective effect of human dystrophin expressing chimeric (DEC) cell therapy on cardiac, respiratory, and skeletal muscle function after intraosseous administration, now we assessed long-term safety and biodistribution of human DEC therapy for potential clinical applications in DMD patients. Safety of different DEC doses (1 × 10<sup>6</sup> and 5 × 10<sup>6</sup>) was assessed at 180 days after systemic-intraosseous administration to <i>mdx/scid</i> mice, a model of DMD. Assessments included: single cell gel electrophoresis assay (COMET assay) to confirm lack of genetic toxicology, magnetic resonance imaging (MRI) for tumorigenicity, and body, muscle and organ weights. Human DEC biodistribution to the target (heart, diaphragm, gastrocnemius muscle) and non-target (blood, bone marrow, lung, liver, spleen) organs was detected by flow cytometry assessment of HLA-ABC markers. Human origin of dystrophin was verified by co-localization of dystrophin and human spectrin by immunofluorescence. No complications were observed after intraosseous transplant of human DEC. COMET assay of donors and fused DEC cells confirmed lack of DNA damage. Biodistribution analysis of HLA-ABC expression revealed dose-dependent presence of human DEC cells in target organs, whereas negligible presence was detected in non-target organs. Human origin of dystrophin in the heart, diaphragm and gastrocnemius muscle was confirmed by co-localization of dystrophin expression with human spectrin. MRI revealed no evidence of tumor formation. Body mass and muscle and organ weights were stable and comparable to vehicle controls, further confirming DEC safety at 180 days post- transplant. This preclinical study confirmed long-term local and systemic safety of human DEC therapy at 180 days after intraosseous administration. Thus, DEC can be considered as a novel myoblast based advanced therapy medicinal product for DMD patients.</p></div>\",\"PeriodicalId\":8389,\"journal\":{\"name\":\"Archivum Immunologiae et Therapiae Experimentalis\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00005-022-00656-7.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Immunologiae et Therapiae Experimentalis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00005-022-00656-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Immunologiae et Therapiae Experimentalis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00005-022-00656-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Long-Term Biodistribution and Safety of Human Dystrophin Expressing Chimeric Cell Therapy After Systemic-Intraosseous Administration to Duchenne Muscular Dystrophy Model
Duchenne muscular dystrophy (DMD) is a lethal disease caused by X-linked mutations in the dystrophin gene. Dystrophin deficiency results in progressive degeneration of cardiac, respiratory and skeletal muscles leading to premature death due to cardiopulmonary complications. Currently, no cure exists for DMD. Based on our previous reports confirming a protective effect of human dystrophin expressing chimeric (DEC) cell therapy on cardiac, respiratory, and skeletal muscle function after intraosseous administration, now we assessed long-term safety and biodistribution of human DEC therapy for potential clinical applications in DMD patients. Safety of different DEC doses (1 × 106 and 5 × 106) was assessed at 180 days after systemic-intraosseous administration to mdx/scid mice, a model of DMD. Assessments included: single cell gel electrophoresis assay (COMET assay) to confirm lack of genetic toxicology, magnetic resonance imaging (MRI) for tumorigenicity, and body, muscle and organ weights. Human DEC biodistribution to the target (heart, diaphragm, gastrocnemius muscle) and non-target (blood, bone marrow, lung, liver, spleen) organs was detected by flow cytometry assessment of HLA-ABC markers. Human origin of dystrophin was verified by co-localization of dystrophin and human spectrin by immunofluorescence. No complications were observed after intraosseous transplant of human DEC. COMET assay of donors and fused DEC cells confirmed lack of DNA damage. Biodistribution analysis of HLA-ABC expression revealed dose-dependent presence of human DEC cells in target organs, whereas negligible presence was detected in non-target organs. Human origin of dystrophin in the heart, diaphragm and gastrocnemius muscle was confirmed by co-localization of dystrophin expression with human spectrin. MRI revealed no evidence of tumor formation. Body mass and muscle and organ weights were stable and comparable to vehicle controls, further confirming DEC safety at 180 days post- transplant. This preclinical study confirmed long-term local and systemic safety of human DEC therapy at 180 days after intraosseous administration. Thus, DEC can be considered as a novel myoblast based advanced therapy medicinal product for DMD patients.
期刊介绍:
Archivum Immunologiae et Therapiae Experimentalis (AITE), founded in 1953 by Ludwik Hirszfeld, is a bimonthly, multidisciplinary journal. It publishes reviews and full original papers dealing with immunology, experimental therapy, immunogenetics, transplantation, microbiology, immunochemistry and ethics in science.