{"title":"修正的贝塞尔第一类函数比率的凸性及其应用。","authors":"Zhen-Hang Yang, Jing-Feng Tian","doi":"10.1007/s13163-022-00439-w","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math> <mrow><msub><mi>I</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> </mrow> </math> be the modified Bessel function of the first kind of order <math><mi>ν</mi></math> . Motivated by a conjecture on the convexity of the ratio <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> <mo>=</mo> <mi>x</mi> <msub><mi>I</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> <mo>/</mo> <msub><mi>I</mi> <mrow><mi>ν</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mfenced><mi>x</mi></mfenced> </mrow> </math> for <math><mrow><mi>ν</mi> <mo>></mo> <mo>-</mo> <mn>2</mn></mrow> </math> , using the monotonicity rules for a ratio of two power series and an elementary technique, we present fully the convexity of the functions <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> </mrow> </math> , <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> <mo>-</mo> <msup><mi>x</mi> <mn>2</mn></msup> <mo>/</mo> <mfenced><mn>2</mn> <mi>ν</mi> <mo>+</mo> <mn>4</mn></mfenced> </mrow> </math> and <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><msup><mi>x</mi> <mrow><mn>1</mn> <mo>/</mo> <mi>θ</mi></mrow> </msup> </mfenced> </mrow> </math> for <math><mrow><mi>θ</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> on <math><mfenced><mn>0</mn> <mo>,</mo> <mi>∞</mi></mfenced> </math> in different value ranges of <math><mi>ν</mi></math> , which give an answer to the conjecture and extend known results. As consequences, some monotonicity results and new functional inequalities for <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> </mrow> </math> are established. As applications, an open problem and a conjectures are settled. Finally, a conjecture on the complete monotonicity of <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><msup><mi>x</mi> <mrow><mn>1</mn> <mo>/</mo> <mi>θ</mi></mrow> </msup> </mfenced> </mrow> </math> for <math><mrow><mi>θ</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> is proposed.</p>","PeriodicalId":49605,"journal":{"name":"Revista Matematica Complutense","volume":" ","pages":"1-27"},"PeriodicalIF":1.4000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361280/pdf/","citationCount":"0","resultStr":"{\"title\":\"Convexity of ratios of the modified Bessel functions of the first kind with applications.\",\"authors\":\"Zhen-Hang Yang, Jing-Feng Tian\",\"doi\":\"10.1007/s13163-022-00439-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <math> <mrow><msub><mi>I</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> </mrow> </math> be the modified Bessel function of the first kind of order <math><mi>ν</mi></math> . Motivated by a conjecture on the convexity of the ratio <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> <mo>=</mo> <mi>x</mi> <msub><mi>I</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> <mo>/</mo> <msub><mi>I</mi> <mrow><mi>ν</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mfenced><mi>x</mi></mfenced> </mrow> </math> for <math><mrow><mi>ν</mi> <mo>></mo> <mo>-</mo> <mn>2</mn></mrow> </math> , using the monotonicity rules for a ratio of two power series and an elementary technique, we present fully the convexity of the functions <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> </mrow> </math> , <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> <mo>-</mo> <msup><mi>x</mi> <mn>2</mn></msup> <mo>/</mo> <mfenced><mn>2</mn> <mi>ν</mi> <mo>+</mo> <mn>4</mn></mfenced> </mrow> </math> and <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><msup><mi>x</mi> <mrow><mn>1</mn> <mo>/</mo> <mi>θ</mi></mrow> </msup> </mfenced> </mrow> </math> for <math><mrow><mi>θ</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> on <math><mfenced><mn>0</mn> <mo>,</mo> <mi>∞</mi></mfenced> </math> in different value ranges of <math><mi>ν</mi></math> , which give an answer to the conjecture and extend known results. As consequences, some monotonicity results and new functional inequalities for <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><mi>x</mi></mfenced> </mrow> </math> are established. As applications, an open problem and a conjectures are settled. Finally, a conjecture on the complete monotonicity of <math> <mrow><msub><mi>W</mi> <mi>ν</mi></msub> <mfenced><msup><mi>x</mi> <mrow><mn>1</mn> <mo>/</mo> <mi>θ</mi></mrow> </msup> </mfenced> </mrow> </math> for <math><mrow><mi>θ</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> is proposed.</p>\",\"PeriodicalId\":49605,\"journal\":{\"name\":\"Revista Matematica Complutense\",\"volume\":\" \",\"pages\":\"1-27\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361280/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Complutense\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13163-022-00439-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Complutense","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13163-022-00439-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 I ν x 为阶数为 ν 的第一类修正贝塞尔函数。出于对 ν > - 2 时比率 W ν x = x I ν x / I ν + 1 x 的凸性猜想,我们利用两个幂级数之比的单调性规则和基本技术、我们充分展示了函数 W ν x , W ν x - x 2 / 2 ν + 4 和 W ν x 1 / θ 在不同的 ν 值范围内对于 θ ≥ 2 on 0 , ∞ 的凸性,给出了猜想的答案并扩展了已知结果。作为结果,建立了 W ν x 的一些单调性结果和新的函数不等式。作为应用,解决了一个未决问题和一个猜想。最后,提出了关于 θ ≥ 2 时 W ν x 1 / θ 的完全单调性的猜想。
Convexity of ratios of the modified Bessel functions of the first kind with applications.
Let be the modified Bessel function of the first kind of order . Motivated by a conjecture on the convexity of the ratio for , using the monotonicity rules for a ratio of two power series and an elementary technique, we present fully the convexity of the functions , and for on in different value ranges of , which give an answer to the conjecture and extend known results. As consequences, some monotonicity results and new functional inequalities for are established. As applications, an open problem and a conjectures are settled. Finally, a conjecture on the complete monotonicity of for is proposed.
期刊介绍:
Revista Matemática Complutense is an international research journal supported by the School of Mathematics at Complutense University in Madrid. It publishes high quality research and survey articles across pure and applied mathematics. Fields of interests include: analysis, differential equations and applications, geometry, topology, algebra, statistics, computer sciences and astronomy. This broad interest is reflected in our interdisciplinary editorial board which is comprised of over 30 internationally esteemed researchers in diverse areas.
The Editorial Board of Revista Matemática Complutense organizes the “Santaló Lecture”, a yearly event where a distinguished mathematician is invited to present a lecture at Complutense University and contribute to the journal. Past lecturers include: Charles T.C. Wall, Jack K. Hale, Hans Triebel, Marcelo Viana, Narayanswamy Balakrishnan, Nigel Kalton, Alfio Quarteroni, David E. Edmunds, Giuseppe Buttazzo, Juan L. Vázquez, Eduard Feireisl, Nigel Hitchin, Lajos Horváth, Hélène Esnault, Luigi Ambrosio, Ignacio Cirac and Bernd Sturmfels. The Santaló Lecturer for 2019 will be Noel Cressie from National Institute for Applied Statistics Research Australia (NIASRA), University of Wollongong.