温度波动的频率微妙地影响着热带蜗牛的生活史。

IF 2.1 4区 生物学 Q2 BIOLOGY
Biological Bulletin Pub Date : 2022-06-01 Epub Date: 2022-05-24 DOI:10.1086/720129
Hannah Arlauskas, Lea Derobert, Rachel Collin
{"title":"温度波动的频率微妙地影响着热带蜗牛的生活史。","authors":"Hannah Arlauskas,&nbsp;Lea Derobert,&nbsp;Rachel Collin","doi":"10.1086/720129","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractMost organisms are faced with daily cyclic changes in a suite of environmental conditions, including temperature. In shallow marine waters, populations of the same species may experience either intertidal or subtidal conditions, such that some individuals experience extreme daily fluctuations as the tide ebbs and flows, while others only a few meters away experience less pronounced or less frequent fluctuations or almost constant thermal conditions. This study used a fully factorial combination of three thermal treatments and two diet treatments to test the hypotheses that (1) individuals experiencing fluctuating temperatures perform more poorly than those experiencing the same mean temperature under constant conditions and that (2) the negative impact of fluctuating temperatures is greater under food-limiting conditions. Five life-history components of the slipper snail <i>Crepidula</i> cf. <i>marginalis</i> were used as response variables. We found that temperature fluctuations impacted size at hatching and time to hatching, as well as growth rate, to some extent. Diet treatments impacted growth rates, clutch sizes, time to first brood, and time to hatching. There were no statistically significant interactions between the two factors. These results show that fluctuations between two temperatures that are typically experienced by these animals in the field can significantly affect fitness-related characters and, therefore, suggest the tidal height at which larvae settle can significantly impact individual fitness. This is one of the first studies to demonstrate that differences in the frequency of fluctuations, in the absence of differences in the magnitude or the mean, can have significant impacts on invertebrate life histories.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frequency of Temperature Fluctuations Subtly Impacts the Life Histories of a Tropical Snail.\",\"authors\":\"Hannah Arlauskas,&nbsp;Lea Derobert,&nbsp;Rachel Collin\",\"doi\":\"10.1086/720129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractMost organisms are faced with daily cyclic changes in a suite of environmental conditions, including temperature. In shallow marine waters, populations of the same species may experience either intertidal or subtidal conditions, such that some individuals experience extreme daily fluctuations as the tide ebbs and flows, while others only a few meters away experience less pronounced or less frequent fluctuations or almost constant thermal conditions. This study used a fully factorial combination of three thermal treatments and two diet treatments to test the hypotheses that (1) individuals experiencing fluctuating temperatures perform more poorly than those experiencing the same mean temperature under constant conditions and that (2) the negative impact of fluctuating temperatures is greater under food-limiting conditions. Five life-history components of the slipper snail <i>Crepidula</i> cf. <i>marginalis</i> were used as response variables. We found that temperature fluctuations impacted size at hatching and time to hatching, as well as growth rate, to some extent. Diet treatments impacted growth rates, clutch sizes, time to first brood, and time to hatching. There were no statistically significant interactions between the two factors. These results show that fluctuations between two temperatures that are typically experienced by these animals in the field can significantly affect fitness-related characters and, therefore, suggest the tidal height at which larvae settle can significantly impact individual fitness. This is one of the first studies to demonstrate that differences in the frequency of fluctuations, in the absence of differences in the magnitude or the mean, can have significant impacts on invertebrate life histories.</p>\",\"PeriodicalId\":55376,\"journal\":{\"name\":\"Biological Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Bulletin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/720129\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/720129","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

大多数生物都面临着一系列环境条件的每日循环变化,包括温度。在浅海水域,同一物种的种群可能经历潮间带或潮下条件,因此,一些个体随着潮汐的涨落而经历极端的每日波动,而仅几米外的其他个体则经历不太明显或不太频繁的波动或几乎恒定的热条件。本研究采用三种热处理和两种饮食处理的全因子组合来检验以下假设:(1)经历温度波动的个体比在恒定条件下经历相同平均温度的个体表现更差;(2)在食物限制条件下,温度波动的负面影响更大。以边际Crepidula cf. marginalis泥螺的5种生活史成分为响应变量。我们发现温度波动对孵化时的大小和孵化时间以及生长速度都有一定的影响。饲粮处理影响生长速率、窝卵数、第一次孵蛋时间和孵化时间。这两个因素之间没有统计学上显著的相互作用。这些结果表明,这些动物在野外通常经历的两种温度之间的波动会显著影响与适合度相关的特征,因此表明幼虫定居的潮汐高度会显著影响个体的适合度。这是第一批证明波动频率的差异,在幅度或平均值没有差异的情况下,可以对无脊椎动物的生活史产生重大影响的研究之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency of Temperature Fluctuations Subtly Impacts the Life Histories of a Tropical Snail.

AbstractMost organisms are faced with daily cyclic changes in a suite of environmental conditions, including temperature. In shallow marine waters, populations of the same species may experience either intertidal or subtidal conditions, such that some individuals experience extreme daily fluctuations as the tide ebbs and flows, while others only a few meters away experience less pronounced or less frequent fluctuations or almost constant thermal conditions. This study used a fully factorial combination of three thermal treatments and two diet treatments to test the hypotheses that (1) individuals experiencing fluctuating temperatures perform more poorly than those experiencing the same mean temperature under constant conditions and that (2) the negative impact of fluctuating temperatures is greater under food-limiting conditions. Five life-history components of the slipper snail Crepidula cf. marginalis were used as response variables. We found that temperature fluctuations impacted size at hatching and time to hatching, as well as growth rate, to some extent. Diet treatments impacted growth rates, clutch sizes, time to first brood, and time to hatching. There were no statistically significant interactions between the two factors. These results show that fluctuations between two temperatures that are typically experienced by these animals in the field can significantly affect fitness-related characters and, therefore, suggest the tidal height at which larvae settle can significantly impact individual fitness. This is one of the first studies to demonstrate that differences in the frequency of fluctuations, in the absence of differences in the magnitude or the mean, can have significant impacts on invertebrate life histories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Bulletin
Biological Bulletin 生物-海洋与淡水生物学
CiteScore
3.30
自引率
6.20%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信