Li Ji, Chen Zhang, Haiwei Li, Ningning Zhang, Peng Zheng, Changhao Guo, Yong Zhang, Xiaoyu Tang
{"title":"起降任务中飞行员脑电图分析。","authors":"Li Ji, Chen Zhang, Haiwei Li, Ningning Zhang, Peng Zheng, Changhao Guo, Yong Zhang, Xiaoyu Tang","doi":"10.1515/bmt-2021-0418","DOIUrl":null,"url":null,"abstract":"<p><p>The take-off and landing phases are considered the critical stages of aircraft flight. To ensure flight efficiency and safety in the critical stages, this research proposes a method for analyzing and monitoring pilot flight status by β-wave. The focus of the study is β potential changes on the EEG map. First, the proportion of β-wave in the electroencephalogram (EEG) of pilots during take-off and landing increases significantly. Second, the EEG map accurately and intuitively reflects the spatial distribution of potential changes in brain regions. Finally, correlation and machine learning are used for further research of β-wave. The conclusions show that the significant changes in the β-wave caused by take-off and landing can be seen in the EEG map to identify and adjust the pilot's state. Therefore, this research provides more accurate and effective reference information (like the EEG map, correlation and machine learning) for efficient and safe flight training in the critical stages.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of pilots' EEG map in take-off and landing tasks.\",\"authors\":\"Li Ji, Chen Zhang, Haiwei Li, Ningning Zhang, Peng Zheng, Changhao Guo, Yong Zhang, Xiaoyu Tang\",\"doi\":\"10.1515/bmt-2021-0418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The take-off and landing phases are considered the critical stages of aircraft flight. To ensure flight efficiency and safety in the critical stages, this research proposes a method for analyzing and monitoring pilot flight status by β-wave. The focus of the study is β potential changes on the EEG map. First, the proportion of β-wave in the electroencephalogram (EEG) of pilots during take-off and landing increases significantly. Second, the EEG map accurately and intuitively reflects the spatial distribution of potential changes in brain regions. Finally, correlation and machine learning are used for further research of β-wave. The conclusions show that the significant changes in the β-wave caused by take-off and landing can be seen in the EEG map to identify and adjust the pilot's state. Therefore, this research provides more accurate and effective reference information (like the EEG map, correlation and machine learning) for efficient and safe flight training in the critical stages.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2021-0418\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/26 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2021-0418","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/26 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of pilots' EEG map in take-off and landing tasks.
The take-off and landing phases are considered the critical stages of aircraft flight. To ensure flight efficiency and safety in the critical stages, this research proposes a method for analyzing and monitoring pilot flight status by β-wave. The focus of the study is β potential changes on the EEG map. First, the proportion of β-wave in the electroencephalogram (EEG) of pilots during take-off and landing increases significantly. Second, the EEG map accurately and intuitively reflects the spatial distribution of potential changes in brain regions. Finally, correlation and machine learning are used for further research of β-wave. The conclusions show that the significant changes in the β-wave caused by take-off and landing can be seen in the EEG map to identify and adjust the pilot's state. Therefore, this research provides more accurate and effective reference information (like the EEG map, correlation and machine learning) for efficient and safe flight training in the critical stages.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.