用哈密顿蒙特卡罗方法量化心脏动作电位模型的参数分布。

Computing in cardiology Pub Date : 2021-09-01 Epub Date: 2022-01-10 DOI:10.23919/cinc53138.2021.9662836
Alejandro Nieto Ramos, Conner J Herndon, Flavio H Fenton, Elizabeth M Cherry
{"title":"用哈密顿蒙特卡罗方法量化心脏动作电位模型的参数分布。","authors":"Alejandro Nieto Ramos,&nbsp;Conner J Herndon,&nbsp;Flavio H Fenton,&nbsp;Elizabeth M Cherry","doi":"10.23919/cinc53138.2021.9662836","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Cardiac action potential (AP) models are typically given with a single set of parameter values; however, this approach does not consider variability and uncertainty across individuals and experimental conditions. As an alternative to single-value parameter fitting, we sought to use a Bayesian approach, the Hamiltonian Monte Carlo (HMC) algorithm, to find distributions of physiological parameter values for cardiac AP models across a range of cycle lengths (CLs) and dynamics.</p><p><strong>Methods: </strong>To assess HMC's accuracy for cardiac data, we applied it to synthetic APs from the Mitchell-Shaeffer (MS) and Fenton-Karma (FK) models with added noise over a range of physiological CLs, some of which included alternans. To show the applicability of HMC to experimental data, we calculated parameter distributions for both models using micro-electrode recordings of zebrafish APs from a range of CLs.</p><p><strong>Results: </strong>For synthetic APs generated from three CLs using the MS (FK) models, HMC produced unimodal quasi-symmetric distributions for all five (13) parameters. APs generated by setting all parameters in the MS (FK) model to the modes of their corresponding marginal distributions yielded errors in voltage traces below 5.0% (0.6%). We also obtained distributions for the MS (FK) model parameters using zebrafish data to construct the first minimal model of the zebrafish AP, with voltage trace errors below 4.8% (3.4%).</p><p><strong>Conclusion: </strong>We have shown that HMC can identify not only a single set of parameter values but also viable distributions for cardiac AP model parameters using synthetic and experimental data. Because HMC generates samples from the parameter distributions based on input data, it can produce families of parameterizations that can be used in population-based modeling approaches without the need for rejecting a large number of randomly generated candidate parameterizations. HMC also has the potential to provide quantitative measures of spatial/individual variability and uncertainty.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228588/pdf/nihms-1815728.pdf","citationCount":"1","resultStr":"{\"title\":\"Quantifying Distributions of Parameters for Cardiac Action Potential Models Using the Hamiltonian Monte Carlo Method.\",\"authors\":\"Alejandro Nieto Ramos,&nbsp;Conner J Herndon,&nbsp;Flavio H Fenton,&nbsp;Elizabeth M Cherry\",\"doi\":\"10.23919/cinc53138.2021.9662836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Cardiac action potential (AP) models are typically given with a single set of parameter values; however, this approach does not consider variability and uncertainty across individuals and experimental conditions. As an alternative to single-value parameter fitting, we sought to use a Bayesian approach, the Hamiltonian Monte Carlo (HMC) algorithm, to find distributions of physiological parameter values for cardiac AP models across a range of cycle lengths (CLs) and dynamics.</p><p><strong>Methods: </strong>To assess HMC's accuracy for cardiac data, we applied it to synthetic APs from the Mitchell-Shaeffer (MS) and Fenton-Karma (FK) models with added noise over a range of physiological CLs, some of which included alternans. To show the applicability of HMC to experimental data, we calculated parameter distributions for both models using micro-electrode recordings of zebrafish APs from a range of CLs.</p><p><strong>Results: </strong>For synthetic APs generated from three CLs using the MS (FK) models, HMC produced unimodal quasi-symmetric distributions for all five (13) parameters. APs generated by setting all parameters in the MS (FK) model to the modes of their corresponding marginal distributions yielded errors in voltage traces below 5.0% (0.6%). We also obtained distributions for the MS (FK) model parameters using zebrafish data to construct the first minimal model of the zebrafish AP, with voltage trace errors below 4.8% (3.4%).</p><p><strong>Conclusion: </strong>We have shown that HMC can identify not only a single set of parameter values but also viable distributions for cardiac AP model parameters using synthetic and experimental data. Because HMC generates samples from the parameter distributions based on input data, it can produce families of parameterizations that can be used in population-based modeling approaches without the need for rejecting a large number of randomly generated candidate parameterizations. HMC also has the potential to provide quantitative measures of spatial/individual variability and uncertainty.</p>\",\"PeriodicalId\":72683,\"journal\":{\"name\":\"Computing in cardiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228588/pdf/nihms-1815728.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目的:心脏动作电位(AP)模型通常只给出一组参数值;然而,这种方法没有考虑个体和实验条件之间的可变性和不确定性。作为单值参数拟合的替代方法,我们试图使用贝叶斯方法,哈密顿蒙特卡罗(HMC)算法,来寻找心脏AP模型在周期长度(CLs)和动力学范围内的生理参数值分布。方法:为了评估HMC对心脏数据的准确性,我们将其应用于Mitchell-Shaeffer (MS)和Fenton-Karma (FK)模型中的合成APs,这些模型在一系列生理CLs(其中一些包括交替)上添加了噪声。为了证明HMC对实验数据的适用性,我们利用斑马鱼ap的微电极记录计算了两种模型的参数分布。结果:对于使用MS (FK)模型从三个CLs生成的合成ap, HMC产生了所有5(13)个参数的单峰准对称分布。将MS (FK)模型中的所有参数设置为其对应的边际分布模式所产生的ap在电压走线中的误差小于5.0%(0.6%)。我们还利用斑马鱼数据获得了MS (FK)模型参数的分布,构建了斑马鱼AP的第一个最小模型,电压跟踪误差低于4.8%(3.4%)。结论:HMC不仅可以识别单一的参数值,还可以通过合成和实验数据识别心脏AP模型参数的可行分布。由于HMC基于输入数据从参数分布中生成样本,因此它可以生成一系列参数化,这些参数化可用于基于总体的建模方法,而无需拒绝大量随机生成的候选参数化。HMC还具有提供空间/个体变异性和不确定性的定量测量的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantifying Distributions of Parameters for Cardiac Action Potential Models Using the Hamiltonian Monte Carlo Method.

Quantifying Distributions of Parameters for Cardiac Action Potential Models Using the Hamiltonian Monte Carlo Method.

Aims: Cardiac action potential (AP) models are typically given with a single set of parameter values; however, this approach does not consider variability and uncertainty across individuals and experimental conditions. As an alternative to single-value parameter fitting, we sought to use a Bayesian approach, the Hamiltonian Monte Carlo (HMC) algorithm, to find distributions of physiological parameter values for cardiac AP models across a range of cycle lengths (CLs) and dynamics.

Methods: To assess HMC's accuracy for cardiac data, we applied it to synthetic APs from the Mitchell-Shaeffer (MS) and Fenton-Karma (FK) models with added noise over a range of physiological CLs, some of which included alternans. To show the applicability of HMC to experimental data, we calculated parameter distributions for both models using micro-electrode recordings of zebrafish APs from a range of CLs.

Results: For synthetic APs generated from three CLs using the MS (FK) models, HMC produced unimodal quasi-symmetric distributions for all five (13) parameters. APs generated by setting all parameters in the MS (FK) model to the modes of their corresponding marginal distributions yielded errors in voltage traces below 5.0% (0.6%). We also obtained distributions for the MS (FK) model parameters using zebrafish data to construct the first minimal model of the zebrafish AP, with voltage trace errors below 4.8% (3.4%).

Conclusion: We have shown that HMC can identify not only a single set of parameter values but also viable distributions for cardiac AP model parameters using synthetic and experimental data. Because HMC generates samples from the parameter distributions based on input data, it can produce families of parameterizations that can be used in population-based modeling approaches without the need for rejecting a large number of randomly generated candidate parameterizations. HMC also has the potential to provide quantitative measures of spatial/individual variability and uncertainty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信