Maria A Oliver, Rhys T Meredith, Bryan R Smith, Max D Bermingham, Nicole F Brackett, Martin D Chapman
{"title":"全血快速细胞因子释放法测定纵向T细胞对祖先型、德尔塔型和组粒型SARS-CoV-2变异的反应","authors":"Maria A Oliver, Rhys T Meredith, Bryan R Smith, Max D Bermingham, Nicole F Brackett, Martin D Chapman","doi":"10.4049/immunohorizons.2200044","DOIUrl":null,"url":null,"abstract":"<p><p>T cell immunity to natural SARS-CoV-2 infection may be more robust and longer lived than Ab responses. Accurate assessment of T cell responses is critical for understanding the magnitude and longevity of immunity across patient cohorts, and against emerging variants. By establishing a simple, accurate, and rapid whole blood test, natural and vaccine-induced SARS-CoV-2 immunity was determined. Cytokine release in whole blood stimulated with peptides specific for SARS-CoV-2 was measured in donors with previous PCR-confirmed infection, suspected infection, or with no exposure history (<i>n</i> = 128), as well as in donors before and after vaccination (<i>n</i> = 32). Longitudinal assessment of T cell responses following initial vaccination and booster vaccination was also conducted (<i>n</i> = 50 and <i>n</i> = 62, respectively). Cytokines were measured by ELISA and multiplex array. IL-2 and IFN-γ were highly elevated in PCR-confirmed donors compared with history-negative controls, with median levels ∼33-fold and ∼48-fold higher, respectively. Receiver operating curves showed IL-2 as the superior biomarker (area under the curve = 0.9950). Following vaccination, all donors demonstrated a positive IL-2 response. Median IL-2 levels increased ∼32-fold from prevaccination to postvaccination in uninfected individuals. Longitudinal assessment revealed that T cell responses were stable up to 6 mo postvaccination. No significant differences in cytokine production were observed between stimulations with Wuhan, Delta, or Omicron peptides. This rapid, whole blood-based test can be used to make comparable longitudinal assessments of vaccine-induced T cell immunity across multiple cohorts and against variants of concern, thus aiding decisions on public health policies.</p>","PeriodicalId":13448,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal T Cell Responses against Ancestral, Delta, and Omicron SARS-CoV-2 Variants Determined by Rapid Cytokine Release Assay in Whole Blood.\",\"authors\":\"Maria A Oliver, Rhys T Meredith, Bryan R Smith, Max D Bermingham, Nicole F Brackett, Martin D Chapman\",\"doi\":\"10.4049/immunohorizons.2200044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>T cell immunity to natural SARS-CoV-2 infection may be more robust and longer lived than Ab responses. Accurate assessment of T cell responses is critical for understanding the magnitude and longevity of immunity across patient cohorts, and against emerging variants. By establishing a simple, accurate, and rapid whole blood test, natural and vaccine-induced SARS-CoV-2 immunity was determined. Cytokine release in whole blood stimulated with peptides specific for SARS-CoV-2 was measured in donors with previous PCR-confirmed infection, suspected infection, or with no exposure history (<i>n</i> = 128), as well as in donors before and after vaccination (<i>n</i> = 32). Longitudinal assessment of T cell responses following initial vaccination and booster vaccination was also conducted (<i>n</i> = 50 and <i>n</i> = 62, respectively). Cytokines were measured by ELISA and multiplex array. IL-2 and IFN-γ were highly elevated in PCR-confirmed donors compared with history-negative controls, with median levels ∼33-fold and ∼48-fold higher, respectively. Receiver operating curves showed IL-2 as the superior biomarker (area under the curve = 0.9950). Following vaccination, all donors demonstrated a positive IL-2 response. Median IL-2 levels increased ∼32-fold from prevaccination to postvaccination in uninfected individuals. Longitudinal assessment revealed that T cell responses were stable up to 6 mo postvaccination. No significant differences in cytokine production were observed between stimulations with Wuhan, Delta, or Omicron peptides. This rapid, whole blood-based test can be used to make comparable longitudinal assessments of vaccine-induced T cell immunity across multiple cohorts and against variants of concern, thus aiding decisions on public health policies.</p>\",\"PeriodicalId\":13448,\"journal\":{\"name\":\"ImmunoHorizons\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoHorizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4049/immunohorizons.2200044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2200044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Longitudinal T Cell Responses against Ancestral, Delta, and Omicron SARS-CoV-2 Variants Determined by Rapid Cytokine Release Assay in Whole Blood.
T cell immunity to natural SARS-CoV-2 infection may be more robust and longer lived than Ab responses. Accurate assessment of T cell responses is critical for understanding the magnitude and longevity of immunity across patient cohorts, and against emerging variants. By establishing a simple, accurate, and rapid whole blood test, natural and vaccine-induced SARS-CoV-2 immunity was determined. Cytokine release in whole blood stimulated with peptides specific for SARS-CoV-2 was measured in donors with previous PCR-confirmed infection, suspected infection, or with no exposure history (n = 128), as well as in donors before and after vaccination (n = 32). Longitudinal assessment of T cell responses following initial vaccination and booster vaccination was also conducted (n = 50 and n = 62, respectively). Cytokines were measured by ELISA and multiplex array. IL-2 and IFN-γ were highly elevated in PCR-confirmed donors compared with history-negative controls, with median levels ∼33-fold and ∼48-fold higher, respectively. Receiver operating curves showed IL-2 as the superior biomarker (area under the curve = 0.9950). Following vaccination, all donors demonstrated a positive IL-2 response. Median IL-2 levels increased ∼32-fold from prevaccination to postvaccination in uninfected individuals. Longitudinal assessment revealed that T cell responses were stable up to 6 mo postvaccination. No significant differences in cytokine production were observed between stimulations with Wuhan, Delta, or Omicron peptides. This rapid, whole blood-based test can be used to make comparable longitudinal assessments of vaccine-induced T cell immunity across multiple cohorts and against variants of concern, thus aiding decisions on public health policies.