无分布随机截距Logistic模型的最优估计。

IF 1
Tanya P Garcia, Yanyuan Ma
{"title":"无分布随机截距Logistic模型的最优估计。","authors":"Tanya P Garcia,&nbsp;Yanyuan Ma","doi":"10.1111/sjos.12170","DOIUrl":null,"url":null,"abstract":"<p><p>Logistic models with a random intercept are prevalent in medical and social research where clustered and longitudinal data are often collected. Traditionally, the random intercept in these models is assumed to follow some parametric distribution such as the normal distribution. However, such an assumption inevitably raises concerns about model misspecification and misleading inference conclusions, especially when there is dependence between the random intercept and model covariates. To protect against such issues, we use a semiparametric approach to develop a computationally simple and consistent estimator where the random intercept is distribution-free. The estimator is revealed to be optimal and achieve the efficiency bound without the need to postulate or estimate any latent variable distributions. We further characterize other general mixed models where such an optimal estimator exists.</p>","PeriodicalId":520775,"journal":{"name":"Scandinavian journal of statistics, theory and applications","volume":" ","pages":"156-171"},"PeriodicalIF":1.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/sjos.12170","citationCount":"9","resultStr":"{\"title\":\"Optimal Estimator for Logistic Model with Distribution-free Random Intercept.\",\"authors\":\"Tanya P Garcia,&nbsp;Yanyuan Ma\",\"doi\":\"10.1111/sjos.12170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Logistic models with a random intercept are prevalent in medical and social research where clustered and longitudinal data are often collected. Traditionally, the random intercept in these models is assumed to follow some parametric distribution such as the normal distribution. However, such an assumption inevitably raises concerns about model misspecification and misleading inference conclusions, especially when there is dependence between the random intercept and model covariates. To protect against such issues, we use a semiparametric approach to develop a computationally simple and consistent estimator where the random intercept is distribution-free. The estimator is revealed to be optimal and achieve the efficiency bound without the need to postulate or estimate any latent variable distributions. We further characterize other general mixed models where such an optimal estimator exists.</p>\",\"PeriodicalId\":520775,\"journal\":{\"name\":\"Scandinavian journal of statistics, theory and applications\",\"volume\":\" \",\"pages\":\"156-171\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/sjos.12170\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian journal of statistics, theory and applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian journal of statistics, theory and applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

具有随机截距的逻辑模型在经常收集聚类和纵向数据的医学和社会研究中很普遍。传统上,假设这些模型中的随机截距遵循某种参数分布,如正态分布。然而,这样的假设不可避免地引起了对模型错误规范和误导性推断结论的担忧,特别是当随机截距与模型协变量之间存在依赖关系时。为了防止这些问题,我们使用半参数方法来开发一个计算简单且一致的估计,其中随机截距是无分布的。该估计器是最优的,无需假设或估计任何潜在变量分布即可达到效率界。我们进一步描述了存在这种最优估计量的其他一般混合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Estimator for Logistic Model with Distribution-free Random Intercept.

Logistic models with a random intercept are prevalent in medical and social research where clustered and longitudinal data are often collected. Traditionally, the random intercept in these models is assumed to follow some parametric distribution such as the normal distribution. However, such an assumption inevitably raises concerns about model misspecification and misleading inference conclusions, especially when there is dependence between the random intercept and model covariates. To protect against such issues, we use a semiparametric approach to develop a computationally simple and consistent estimator where the random intercept is distribution-free. The estimator is revealed to be optimal and achieve the efficiency bound without the need to postulate or estimate any latent variable distributions. We further characterize other general mixed models where such an optimal estimator exists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信