Hana Rmili, Aymen Mouelhi, Basel Solaiman, Raoudha Doghri, Salam Labidi
{"title":"一种基于色彩空间评估的免疫组化组织图像中消化神经内分泌肿瘤分级的新型预处理方法。","authors":"Hana Rmili, Aymen Mouelhi, Basel Solaiman, Raoudha Doghri, Salam Labidi","doi":"10.5114/pjp.2022.119841","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The complexity of histopathological images remains a challenging issue in cancer diagnosis. A pathologist analyses immunohistochemical images to detect a colour-based stain, which is brown for positive nuclei with different intensities and blue for negative nuclei. Several issues emerge during the eyeballing tissue slide analysis, such as colour variations caused by stain inhomogeneity, non-uniform illumination, irregular cell shapes, and overlapping cell nuclei. To overcome those problems, an automated computer-aided diagnosis system is proposed to segment and quantify digestive neuroendocrine tumours.</p><p><strong>Material and methods: </strong>We present a novel pre-processing approach based on colour space assessment. A criterion called pertinence degree is introduced to select the appropriate colour channel, followed by contrast enhancement. Subsequently, the adaptive local threshold technique that uses the modified Laplacian filter is applied to minimize the implementation complexity, highlight edges, and emphasize intensity variation between cells across the slide. Finally, the improved watershed algorithm based on the concave vertex graph is applied for cell separation.</p><p><strong>Results: </strong>The performance of the algorithms for nucleus segmentation is evaluated according to both the object-level and pixel-level criteria. Our approach increases segmentation accuracy, with the F1-score equal to 0.986. There is significant agreement between the applied approach and the expert's ground truth segmentation.</p><p><strong>Conclusions: </strong>The proposed method outperformed the state-of-the-art techniques based on recall, precision, the F1-score, and the Dice coefficient.</p>","PeriodicalId":49692,"journal":{"name":"Polish Journal of Pathology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel pre-processing approach based on colour space assessment for digestive neuroendocrine tumour grading in immunohistochemical tissue images.\",\"authors\":\"Hana Rmili, Aymen Mouelhi, Basel Solaiman, Raoudha Doghri, Salam Labidi\",\"doi\":\"10.5114/pjp.2022.119841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The complexity of histopathological images remains a challenging issue in cancer diagnosis. A pathologist analyses immunohistochemical images to detect a colour-based stain, which is brown for positive nuclei with different intensities and blue for negative nuclei. Several issues emerge during the eyeballing tissue slide analysis, such as colour variations caused by stain inhomogeneity, non-uniform illumination, irregular cell shapes, and overlapping cell nuclei. To overcome those problems, an automated computer-aided diagnosis system is proposed to segment and quantify digestive neuroendocrine tumours.</p><p><strong>Material and methods: </strong>We present a novel pre-processing approach based on colour space assessment. A criterion called pertinence degree is introduced to select the appropriate colour channel, followed by contrast enhancement. Subsequently, the adaptive local threshold technique that uses the modified Laplacian filter is applied to minimize the implementation complexity, highlight edges, and emphasize intensity variation between cells across the slide. Finally, the improved watershed algorithm based on the concave vertex graph is applied for cell separation.</p><p><strong>Results: </strong>The performance of the algorithms for nucleus segmentation is evaluated according to both the object-level and pixel-level criteria. Our approach increases segmentation accuracy, with the F1-score equal to 0.986. There is significant agreement between the applied approach and the expert's ground truth segmentation.</p><p><strong>Conclusions: </strong>The proposed method outperformed the state-of-the-art techniques based on recall, precision, the F1-score, and the Dice coefficient.</p>\",\"PeriodicalId\":49692,\"journal\":{\"name\":\"Polish Journal of Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5114/pjp.2022.119841\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/pjp.2022.119841","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
A novel pre-processing approach based on colour space assessment for digestive neuroendocrine tumour grading in immunohistochemical tissue images.
Introduction: The complexity of histopathological images remains a challenging issue in cancer diagnosis. A pathologist analyses immunohistochemical images to detect a colour-based stain, which is brown for positive nuclei with different intensities and blue for negative nuclei. Several issues emerge during the eyeballing tissue slide analysis, such as colour variations caused by stain inhomogeneity, non-uniform illumination, irregular cell shapes, and overlapping cell nuclei. To overcome those problems, an automated computer-aided diagnosis system is proposed to segment and quantify digestive neuroendocrine tumours.
Material and methods: We present a novel pre-processing approach based on colour space assessment. A criterion called pertinence degree is introduced to select the appropriate colour channel, followed by contrast enhancement. Subsequently, the adaptive local threshold technique that uses the modified Laplacian filter is applied to minimize the implementation complexity, highlight edges, and emphasize intensity variation between cells across the slide. Finally, the improved watershed algorithm based on the concave vertex graph is applied for cell separation.
Results: The performance of the algorithms for nucleus segmentation is evaluated according to both the object-level and pixel-level criteria. Our approach increases segmentation accuracy, with the F1-score equal to 0.986. There is significant agreement between the applied approach and the expert's ground truth segmentation.
Conclusions: The proposed method outperformed the state-of-the-art techniques based on recall, precision, the F1-score, and the Dice coefficient.
期刊介绍:
Polish Journal of Pathology is an official magazine of the Polish Association of Pathologists and the Polish Branch of the International Academy of Pathology. For the last 18 years of its presence on the market it has published more than 360 original papers and scientific reports, often quoted in reviewed foreign magazines. A new extended Scientific Board of the quarterly magazine comprises people with recognised achievements in pathomorphology and biology, including molecular biology and cytogenetics, as well as clinical oncology. Polish scientists who are working abroad and are international authorities have also been invited. Apart from presenting scientific reports, the magazine will also play a didactic and training role.