{"title":"低于检测限的测量值。","authors":"Guro F Giskeødegård, Stian Lydersen","doi":"10.4045/tidsskr.22.0439","DOIUrl":null,"url":null,"abstract":"Let's start with an example: Figure 1 shows a fictional dataset of measurements of serum levels of a substance in two patient groups. The crosses indicate the actual values, but only those above the lower detection limit can be measured. We know how many values are below the detection limit, but not the actual values. These data are missing not at random (MNAR) because the probability depends on the non-observed values being below the detection limit (1).","PeriodicalId":520817,"journal":{"name":"Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurements below the detection limit.\",\"authors\":\"Guro F Giskeødegård, Stian Lydersen\",\"doi\":\"10.4045/tidsskr.22.0439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let's start with an example: Figure 1 shows a fictional dataset of measurements of serum levels of a substance in two patient groups. The crosses indicate the actual values, but only those above the lower detection limit can be measured. We know how many values are below the detection limit, but not the actual values. These data are missing not at random (MNAR) because the probability depends on the non-observed values being below the detection limit (1).\",\"PeriodicalId\":520817,\"journal\":{\"name\":\"Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4045/tidsskr.22.0439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/27 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4045/tidsskr.22.0439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/27 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
Let's start with an example: Figure 1 shows a fictional dataset of measurements of serum levels of a substance in two patient groups. The crosses indicate the actual values, but only those above the lower detection limit can be measured. We know how many values are below the detection limit, but not the actual values. These data are missing not at random (MNAR) because the probability depends on the non-observed values being below the detection limit (1).