LncRNA HOTAIR通过海绵miRNA-106b-5p抑制类风湿关节炎中成纤维细胞样滑膜细胞的进展。

IF 3.3 4区 医学 Q3 IMMUNOLOGY
Autoimmunity Pub Date : 2022-12-01 Epub Date: 2022-09-26 DOI:10.1080/08916934.2022.2126460
Hongxia Qiu, Meixia Liu, Xuefei Shi, Miao Ma, Jing Zhang, Hua Liu
{"title":"LncRNA HOTAIR通过海绵miRNA-106b-5p抑制类风湿关节炎中成纤维细胞样滑膜细胞的进展。","authors":"Hongxia Qiu,&nbsp;Meixia Liu,&nbsp;Xuefei Shi,&nbsp;Miao Ma,&nbsp;Jing Zhang,&nbsp;Hua Liu","doi":"10.1080/08916934.2022.2126460","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease of unknown etiology. Human fibroblast-like synoviocytes (HFLSs) are the main effector cells for synovial hyperplasia and invasion in RA. Long non-coding RNAs (lncRNAs) play key roles in several autoimmune diseases, including RA. We investigated the effects of lncRNA HOX transcript antisense intergenic RNA (HOTAIR) on the pathological behavior of HFLSs in RA. The microRNAs (miRNAs) with potential binding sites for lncRNA HOTAIR were predicted using Starbase v2.0. TargetScan (http://www.targetscan.org) was used to analyze the potential target genes of miR-106b-5p. The interactions were further verified using a dual-luciferase reporter assay. RNA and protein expression was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. The proliferation, cell invasion and migration, and cell apoptosis of HFLSs in RA was detected by the 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay, transwell assay, and flow cytometry (FCM). The dual luciferase reporter assay confirmed the interactions between lncRNA HOTAIR and miR-106b-5p and between miR-106b-5p and SMAD family member 7 (SMAD7). The qRT-PCR results indicated that the expression of lncRNA HOTAIR was markedly decreased and that of miR-106b-5p was markedly increased in HFLSs of RA. Cell proliferation, invasion, and migration of HFLSs were inhibited by lncRNA HOTAIR upregulation, and the expression of miR-106b-5p was negatively regulated by lncRNA HOTAIR in HFLSs. Apoptosis of HFLS cells was improved by the overexpression of lncRNA HOTAIR. All the effects of lncRNA HOTAIR upregulation on HFLSs were reversed after the overexpression of miR-106b-5p. Smad7 was identified as a target gene of miR-106b-5p, and the effects of downregulation of miR-106b-5p on HFLSs could be abolished by silencing Smad7. We found that lncRNA HOTAIR was significantly downregulated in the HFLSs of patients with RA. Moreover, lncRNA HOTAIR influenced cell growth, migration, invasion, and apoptosis in HFLSs through the miR-106b-5p/Smad7 axis.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LncRNA HOTAIR inhibits the progression of fibroblast-like synoviocytes by sponging miRNA-106b-5p in rheumatoid arthritis.\",\"authors\":\"Hongxia Qiu,&nbsp;Meixia Liu,&nbsp;Xuefei Shi,&nbsp;Miao Ma,&nbsp;Jing Zhang,&nbsp;Hua Liu\",\"doi\":\"10.1080/08916934.2022.2126460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease of unknown etiology. Human fibroblast-like synoviocytes (HFLSs) are the main effector cells for synovial hyperplasia and invasion in RA. Long non-coding RNAs (lncRNAs) play key roles in several autoimmune diseases, including RA. We investigated the effects of lncRNA HOX transcript antisense intergenic RNA (HOTAIR) on the pathological behavior of HFLSs in RA. The microRNAs (miRNAs) with potential binding sites for lncRNA HOTAIR were predicted using Starbase v2.0. TargetScan (http://www.targetscan.org) was used to analyze the potential target genes of miR-106b-5p. The interactions were further verified using a dual-luciferase reporter assay. RNA and protein expression was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. The proliferation, cell invasion and migration, and cell apoptosis of HFLSs in RA was detected by the 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay, transwell assay, and flow cytometry (FCM). The dual luciferase reporter assay confirmed the interactions between lncRNA HOTAIR and miR-106b-5p and between miR-106b-5p and SMAD family member 7 (SMAD7). The qRT-PCR results indicated that the expression of lncRNA HOTAIR was markedly decreased and that of miR-106b-5p was markedly increased in HFLSs of RA. Cell proliferation, invasion, and migration of HFLSs were inhibited by lncRNA HOTAIR upregulation, and the expression of miR-106b-5p was negatively regulated by lncRNA HOTAIR in HFLSs. Apoptosis of HFLS cells was improved by the overexpression of lncRNA HOTAIR. All the effects of lncRNA HOTAIR upregulation on HFLSs were reversed after the overexpression of miR-106b-5p. Smad7 was identified as a target gene of miR-106b-5p, and the effects of downregulation of miR-106b-5p on HFLSs could be abolished by silencing Smad7. We found that lncRNA HOTAIR was significantly downregulated in the HFLSs of patients with RA. Moreover, lncRNA HOTAIR influenced cell growth, migration, invasion, and apoptosis in HFLSs through the miR-106b-5p/Smad7 axis.</p>\",\"PeriodicalId\":8688,\"journal\":{\"name\":\"Autoimmunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autoimmunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08916934.2022.2126460\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2022.2126460","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

类风湿性关节炎(RA)是一种病因不明的慢性进行性自身免疫性疾病。人成纤维细胞样滑膜细胞(HFLSs)是类风湿关节炎滑膜增生和侵袭的主要效应细胞。长链非编码rna (lncRNAs)在包括RA在内的多种自身免疫性疾病中发挥关键作用。我们研究了lncRNA HOX转录反义基因间RNA (HOTAIR)对RA中hfls病理行为的影响。利用Starbase v2.0预测具有lncRNA HOTAIR潜在结合位点的microrna (mirna)。使用TargetScan (http://www.targetscan.org)分析miR-106b-5p的潜在靶基因。使用双荧光素酶报告试验进一步验证了相互作用。采用定量逆转录聚合酶链反应(qRT-PCR)和western blotting检测RNA和蛋白的表达。采用3-(4,5-二甲基噻唑)-2,5-二苯基溴化四唑(MTT)法、transwell法和流式细胞术(FCM)检测hfls在RA中的增殖、细胞侵袭迁移和细胞凋亡情况。双荧光素酶报告试验证实了lncRNA HOTAIR与miR-106b-5p之间以及miR-106b-5p与SMAD家族成员7 (SMAD7)之间的相互作用。qRT-PCR结果显示,RA hfls中lncRNA HOTAIR的表达明显降低,miR-106b-5p的表达明显升高。上调lncRNA HOTAIR可抑制HFLSs的细胞增殖、侵袭和迁移,lncRNA HOTAIR可负调控miR-106b-5p在HFLSs中的表达。过表达lncRNA HOTAIR可促进HFLS细胞凋亡。过表达miR-106b-5p后,lncRNA HOTAIR上调对hfls的所有影响均被逆转。Smad7被鉴定为miR-106b-5p的靶基因,miR-106b-5p下调对hfls的影响可以通过沉默Smad7来消除。我们发现lncRNA HOTAIR在RA患者的hfls中显著下调。此外,lncRNA HOTAIR通过miR-106b-5p/Smad7轴影响hfls中的细胞生长、迁移、侵袭和凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LncRNA HOTAIR inhibits the progression of fibroblast-like synoviocytes by sponging miRNA-106b-5p in rheumatoid arthritis.

Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease of unknown etiology. Human fibroblast-like synoviocytes (HFLSs) are the main effector cells for synovial hyperplasia and invasion in RA. Long non-coding RNAs (lncRNAs) play key roles in several autoimmune diseases, including RA. We investigated the effects of lncRNA HOX transcript antisense intergenic RNA (HOTAIR) on the pathological behavior of HFLSs in RA. The microRNAs (miRNAs) with potential binding sites for lncRNA HOTAIR were predicted using Starbase v2.0. TargetScan (http://www.targetscan.org) was used to analyze the potential target genes of miR-106b-5p. The interactions were further verified using a dual-luciferase reporter assay. RNA and protein expression was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. The proliferation, cell invasion and migration, and cell apoptosis of HFLSs in RA was detected by the 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay, transwell assay, and flow cytometry (FCM). The dual luciferase reporter assay confirmed the interactions between lncRNA HOTAIR and miR-106b-5p and between miR-106b-5p and SMAD family member 7 (SMAD7). The qRT-PCR results indicated that the expression of lncRNA HOTAIR was markedly decreased and that of miR-106b-5p was markedly increased in HFLSs of RA. Cell proliferation, invasion, and migration of HFLSs were inhibited by lncRNA HOTAIR upregulation, and the expression of miR-106b-5p was negatively regulated by lncRNA HOTAIR in HFLSs. Apoptosis of HFLS cells was improved by the overexpression of lncRNA HOTAIR. All the effects of lncRNA HOTAIR upregulation on HFLSs were reversed after the overexpression of miR-106b-5p. Smad7 was identified as a target gene of miR-106b-5p, and the effects of downregulation of miR-106b-5p on HFLSs could be abolished by silencing Smad7. We found that lncRNA HOTAIR was significantly downregulated in the HFLSs of patients with RA. Moreover, lncRNA HOTAIR influenced cell growth, migration, invasion, and apoptosis in HFLSs through the miR-106b-5p/Smad7 axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autoimmunity
Autoimmunity 医学-免疫学
CiteScore
5.70
自引率
8.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Autoimmunity is an international, peer reviewed journal that publishes articles on cell and molecular immunology, immunogenetics, molecular biology and autoimmunity. Current understanding of immunity and autoimmunity is being furthered by the progress in new molecular sciences that has recently been little short of spectacular. In addition to the basic elements and mechanisms of the immune system, Autoimmunity is interested in the cellular and molecular processes associated with systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, type I diabetes, multiple sclerosis and other systemic and organ-specific autoimmune disorders. The journal reflects the immunology areas where scientific progress is most rapid. It is a valuable tool to basic and translational researchers in cell biology, genetics and molecular biology of immunity and autoimmunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信