{"title":"直线上支持静电δ壳势的Dirac算子的谱跃迁。","authors":"Jussi Behrndt, Markus Holzmann, Matěj Tušek","doi":"10.1007/s00020-022-02711-6","DOIUrl":null,"url":null,"abstract":"<p><p>In this note the two dimensional Dirac operator <math><msub><mi>A</mi> <mi>η</mi></msub> </math> with an electrostatic <math><mi>δ</mi></math> -shell interaction of strength <math><mrow><mi>η</mi> <mo>∈</mo> <mi>R</mi></mrow> </math> supported on a straight line is studied. We observe a spectral transition in the sense that for the critical interaction strengths <math><mrow><mi>η</mi> <mo>=</mo> <mo>±</mo> <mn>2</mn></mrow> </math> the continuous spectrum of <math><msub><mi>A</mi> <mi>η</mi></msub> </math> inside the spectral gap of the free Dirac operator <math><msub><mi>A</mi> <mn>0</mn></msub> </math> collapses abruptly to a single point.</p>","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"94 3","pages":"33"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427928/pdf/","citationCount":"4","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Spectral Transition for Dirac Operators with Electrostatic <ns0:math><ns0:mi>δ</ns0:mi></ns0:math> -Shell Potentials Supported on the Straight Line.\",\"authors\":\"Jussi Behrndt, Markus Holzmann, Matěj Tušek\",\"doi\":\"10.1007/s00020-022-02711-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this note the two dimensional Dirac operator <math><msub><mi>A</mi> <mi>η</mi></msub> </math> with an electrostatic <math><mi>δ</mi></math> -shell interaction of strength <math><mrow><mi>η</mi> <mo>∈</mo> <mi>R</mi></mrow> </math> supported on a straight line is studied. We observe a spectral transition in the sense that for the critical interaction strengths <math><mrow><mi>η</mi> <mo>=</mo> <mo>±</mo> <mn>2</mn></mrow> </math> the continuous spectrum of <math><msub><mi>A</mi> <mi>η</mi></msub> </math> inside the spectral gap of the free Dirac operator <math><msub><mi>A</mi> <mn>0</mn></msub> </math> collapses abruptly to a single point.</p>\",\"PeriodicalId\":13658,\"journal\":{\"name\":\"Integral Equations and Operator Theory\",\"volume\":\"94 3\",\"pages\":\"33\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427928/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Equations and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-022-02711-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-022-02711-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectral Transition for Dirac Operators with Electrostatic δ -Shell Potentials Supported on the Straight Line.
In this note the two dimensional Dirac operator with an electrostatic -shell interaction of strength supported on a straight line is studied. We observe a spectral transition in the sense that for the critical interaction strengths the continuous spectrum of inside the spectral gap of the free Dirac operator collapses abruptly to a single point.
期刊介绍:
Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.