回归自然,微生物生产色素和着色剂供食品使用。

Q1 Agricultural and Biological Sciences
Advances in Food and Nutrition Research Pub Date : 2022-01-01 Epub Date: 2022-08-11 DOI:10.1016/bs.afnr.2022.04.008
Laurent Dufossé
{"title":"回归自然,微生物生产色素和着色剂供食品使用。","authors":"Laurent Dufossé","doi":"10.1016/bs.afnr.2022.04.008","DOIUrl":null,"url":null,"abstract":"<p><p>Pigments-producing microorganisms are quite common in Nature. However, there is a long journey from the Petri dish to the market place. Twenty-five years ago, scientists wondered if such productions would remain a scientific oddity or become an industrial reality. The answer is not straightforward as processes using fungi, bacteria or yeasts can now indeed provide carotenoids or phycocyanin at an industrial level. Another production factor to consider is peculiar as Monascus red colored food is consumed by more than one billion Asian people; however, still banned in many other countries. European and American consumers will follow as soon as \"100%-guaranteed\" toxin-free strains (molecular engineered strains, citrinin gene deleted strains) will be developed and commercialized at a world level. For other pigmented biomolecules, some laboratories and companies invested and continue to invest a lot of money as any combination of new source and/or new pigment requires a lot of experimental work, process optimization, toxicological studies, and regulatory approval. Time will tell whether investments in pigments such as azaphilones or anthraquinones were justified. Future trends involve combinatorial engineering, gene knock-out, and the production of niche pigments not found in plants such as C50 carotenoids or aryl carotenoids.</p>","PeriodicalId":35571,"journal":{"name":"Advances in Food and Nutrition Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Back to nature, microbial production of pigments and colorants for food use.\",\"authors\":\"Laurent Dufossé\",\"doi\":\"10.1016/bs.afnr.2022.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pigments-producing microorganisms are quite common in Nature. However, there is a long journey from the Petri dish to the market place. Twenty-five years ago, scientists wondered if such productions would remain a scientific oddity or become an industrial reality. The answer is not straightforward as processes using fungi, bacteria or yeasts can now indeed provide carotenoids or phycocyanin at an industrial level. Another production factor to consider is peculiar as Monascus red colored food is consumed by more than one billion Asian people; however, still banned in many other countries. European and American consumers will follow as soon as \\\"100%-guaranteed\\\" toxin-free strains (molecular engineered strains, citrinin gene deleted strains) will be developed and commercialized at a world level. For other pigmented biomolecules, some laboratories and companies invested and continue to invest a lot of money as any combination of new source and/or new pigment requires a lot of experimental work, process optimization, toxicological studies, and regulatory approval. Time will tell whether investments in pigments such as azaphilones or anthraquinones were justified. Future trends involve combinatorial engineering, gene knock-out, and the production of niche pigments not found in plants such as C50 carotenoids or aryl carotenoids.</p>\",\"PeriodicalId\":35571,\"journal\":{\"name\":\"Advances in Food and Nutrition Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Food and Nutrition Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.afnr.2022.04.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Food and Nutrition Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.afnr.2022.04.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

摘要

产生色素的微生物在自然界中很常见。然而,从培养皿到市场还有很长的路要走。25年前,科学家们想知道这样的产品是否仍然是科学上的怪事,还是会成为工业上的现实。答案并不简单,因为使用真菌、细菌或酵母的工艺现在确实可以在工业水平上提供类胡萝卜素或藻蓝蛋白。另一个需要考虑的生产因素是特殊的,因为超过10亿亚洲人食用红曲红食品;然而,在许多其他国家仍然被禁止。一旦在世界范围内开发出“100%保证”的无毒菌株(分子工程菌株、柑橘碱基因缺失菌株)并商业化,欧美消费者将紧随其后。对于其他色素生物分子,一些实验室和公司已经并将继续投入大量资金,因为任何新来源和/或新色素的组合都需要大量的实验工作、工艺优化、毒理学研究和监管部门的批准。时间会告诉我们,对氮杂酚类或蒽醌类色素的投资是否合理。未来的趋势包括组合工程、基因敲除和生产植物中没有的生态位色素,如C50类胡萝卜素或芳基类胡萝卜素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Back to nature, microbial production of pigments and colorants for food use.

Pigments-producing microorganisms are quite common in Nature. However, there is a long journey from the Petri dish to the market place. Twenty-five years ago, scientists wondered if such productions would remain a scientific oddity or become an industrial reality. The answer is not straightforward as processes using fungi, bacteria or yeasts can now indeed provide carotenoids or phycocyanin at an industrial level. Another production factor to consider is peculiar as Monascus red colored food is consumed by more than one billion Asian people; however, still banned in many other countries. European and American consumers will follow as soon as "100%-guaranteed" toxin-free strains (molecular engineered strains, citrinin gene deleted strains) will be developed and commercialized at a world level. For other pigmented biomolecules, some laboratories and companies invested and continue to invest a lot of money as any combination of new source and/or new pigment requires a lot of experimental work, process optimization, toxicological studies, and regulatory approval. Time will tell whether investments in pigments such as azaphilones or anthraquinones were justified. Future trends involve combinatorial engineering, gene knock-out, and the production of niche pigments not found in plants such as C50 carotenoids or aryl carotenoids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Food and Nutrition Research
Advances in Food and Nutrition Research Agricultural and Biological Sciences-Food Science
CiteScore
8.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信