{"title":"8三体嵌合体的产前诊断,最初是通过cffDNA筛查确定的。","authors":"Junjie Hu, Kai Yan, Pengzhen Jin, Yanmei Yang, Yixi Sun, Minyue Dong","doi":"10.1186/s13039-022-00616-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>So called cell-free fetal DNA (cffDNA) in the maternal plasma, which is derived from placenta, is widely used to screen fetal aneuploidies, including trisomy 21, 18, 13 and sex chromosomes. Here we reported a case of trisomy 8 mosaicism (T8M), which was initially identified via cffDNA screening in noninvasive prenatal testing (NIPT).</p><p><strong>Methods: </strong>A 35-year-old woman received cffDNA screening at 17th week of gestation. Amniocentesis was performed subsequently, and karyotyping, single-nucleotide polymorphism array (SNP-array) and BACs-on-Beads™ (BoBs™) were used to determine fetal chromosome content. Interphase fluorescence in situ hybridization (FISH) was applied to determine the copy number of chromosome 8.</p><p><strong>Results: </strong>An enhanced risk for fetal trisomy 8 was identified by cffDNA screening in the studied pregnant woman. After amniocentesis trisomy 8 was found in 1 of 73 metaphases. SNP-array on DNA derived from cultured amniocytes and neonatal cord blood cells suggested the presence of T8M. Interphase FISH on native neonatal cord blood cells confirmed T8M with a percentage of 10%. The Bobs™ fluorescence data also suggested that 8q23-8q24 was amplified.</p><p><strong>Conclusions: </strong>The current study shows that NIPT is suited to provide hints on rare autosomal trisomies, which have to be further validated and confirmed by other approaches.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434846/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prenatal diagnosis of trisomy 8 mosaicism, initially identified by cffDNA screening.\",\"authors\":\"Junjie Hu, Kai Yan, Pengzhen Jin, Yanmei Yang, Yixi Sun, Minyue Dong\",\"doi\":\"10.1186/s13039-022-00616-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>So called cell-free fetal DNA (cffDNA) in the maternal plasma, which is derived from placenta, is widely used to screen fetal aneuploidies, including trisomy 21, 18, 13 and sex chromosomes. Here we reported a case of trisomy 8 mosaicism (T8M), which was initially identified via cffDNA screening in noninvasive prenatal testing (NIPT).</p><p><strong>Methods: </strong>A 35-year-old woman received cffDNA screening at 17th week of gestation. Amniocentesis was performed subsequently, and karyotyping, single-nucleotide polymorphism array (SNP-array) and BACs-on-Beads™ (BoBs™) were used to determine fetal chromosome content. Interphase fluorescence in situ hybridization (FISH) was applied to determine the copy number of chromosome 8.</p><p><strong>Results: </strong>An enhanced risk for fetal trisomy 8 was identified by cffDNA screening in the studied pregnant woman. After amniocentesis trisomy 8 was found in 1 of 73 metaphases. SNP-array on DNA derived from cultured amniocytes and neonatal cord blood cells suggested the presence of T8M. Interphase FISH on native neonatal cord blood cells confirmed T8M with a percentage of 10%. The Bobs™ fluorescence data also suggested that 8q23-8q24 was amplified.</p><p><strong>Conclusions: </strong>The current study shows that NIPT is suited to provide hints on rare autosomal trisomies, which have to be further validated and confirmed by other approaches.</p>\",\"PeriodicalId\":19099,\"journal\":{\"name\":\"Molecular Cytogenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434846/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cytogenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13039-022-00616-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-022-00616-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Prenatal diagnosis of trisomy 8 mosaicism, initially identified by cffDNA screening.
Background: So called cell-free fetal DNA (cffDNA) in the maternal plasma, which is derived from placenta, is widely used to screen fetal aneuploidies, including trisomy 21, 18, 13 and sex chromosomes. Here we reported a case of trisomy 8 mosaicism (T8M), which was initially identified via cffDNA screening in noninvasive prenatal testing (NIPT).
Methods: A 35-year-old woman received cffDNA screening at 17th week of gestation. Amniocentesis was performed subsequently, and karyotyping, single-nucleotide polymorphism array (SNP-array) and BACs-on-Beads™ (BoBs™) were used to determine fetal chromosome content. Interphase fluorescence in situ hybridization (FISH) was applied to determine the copy number of chromosome 8.
Results: An enhanced risk for fetal trisomy 8 was identified by cffDNA screening in the studied pregnant woman. After amniocentesis trisomy 8 was found in 1 of 73 metaphases. SNP-array on DNA derived from cultured amniocytes and neonatal cord blood cells suggested the presence of T8M. Interphase FISH on native neonatal cord blood cells confirmed T8M with a percentage of 10%. The Bobs™ fluorescence data also suggested that 8q23-8q24 was amplified.
Conclusions: The current study shows that NIPT is suited to provide hints on rare autosomal trisomies, which have to be further validated and confirmed by other approaches.
期刊介绍:
Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics.
Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to:
-Structural and functional organization of chromosome and nucleus-
Genome variation, expression and evolution-
Animal and plant molecular cytogenetics and genomics-
Chromosome abnormalities and genomic variations in clinical genetics-
Applications in preimplantation, pre- and post-natal diagnosis-
Applications in the central nervous system, cancer and haematology research-
Previously unreported applications of molecular cytogenetic techniques-
Development of new techniques or significant enhancements to established techniques.
This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.