{"title":"以斑马鱼为模式生物研究氧化应激的研究进展","authors":"Sabarna Chowdhury, Surjya Kumar Saikia","doi":"10.1089/zeb.2021.0083","DOIUrl":null,"url":null,"abstract":"<p><p>Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from <i>in vivo</i> to <i>in vitro</i> models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Use of Zebrafish as a Model Organism to Study Oxidative Stress: A Review.\",\"authors\":\"Sabarna Chowdhury, Surjya Kumar Saikia\",\"doi\":\"10.1089/zeb.2021.0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from <i>in vivo</i> to <i>in vitro</i> models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2021.0083\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2021.0083","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Use of Zebrafish as a Model Organism to Study Oxidative Stress: A Review.
Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from in vivo to in vitro models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.