以斑马鱼为模式生物研究氧化应激的研究进展

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2022-10-01 Epub Date: 2022-09-01 DOI:10.1089/zeb.2021.0083
Sabarna Chowdhury, Surjya Kumar Saikia
{"title":"以斑马鱼为模式生物研究氧化应激的研究进展","authors":"Sabarna Chowdhury,&nbsp;Surjya Kumar Saikia","doi":"10.1089/zeb.2021.0083","DOIUrl":null,"url":null,"abstract":"<p><p>Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from <i>in vivo</i> to <i>in vitro</i> models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Use of Zebrafish as a Model Organism to Study Oxidative Stress: A Review.\",\"authors\":\"Sabarna Chowdhury,&nbsp;Surjya Kumar Saikia\",\"doi\":\"10.1089/zeb.2021.0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from <i>in vivo</i> to <i>in vitro</i> models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2021.0083\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2021.0083","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

二氧是每个生物体的组成部分,但其浓度因器官而异。二氧代谢产物的产生可能导致氧化应激。由于氧化应激具有损伤细胞内各种生物分子的潜力,因此目前已成为一个活跃的研究领域。从脊椎动物到无脊椎动物,从啮齿动物到鱼类,从体内到体外模型,氧化应激已经在广泛的模式生物中得到了研究。但斑马鱼(成年、幼体或胚胎阶段)由于其巨大的优势(透明的胚胎、成本效益、与人类基因组相似、容易的发育过程、每次产卵的后代众多等等)而成为最有希望研究氧化应激的脊椎动物模式生物。大量关于斑马鱼暴露于化学物质、辐射、纳米颗粒、杀虫剂、重金属等环境中的氧化应激的研究证明了这一点。在这些背景下,本综述试图突出斑马鱼作为氧化应激模型的潜力,并与其他伴随模型进行比较。从生物医学到环境研究,已经涵盖了几个领域,以解释它是一种更方便和可靠的动物模型,用于氧化机制的实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Zebrafish as a Model Organism to Study Oxidative Stress: A Review.

Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from in vivo to in vitro models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信