使用端粒长度测量和甲基化来了解分钟栉水母(一种小型化石哺乳动物)的核型多样化。

IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Genome Pub Date : 2022-11-01 Epub Date: 2022-08-31 DOI:10.1139/gen-2022-0018
C A Matzenbacher, J Da Silva, A L H Garcia, R Kretschmer, M Cappetta, E H C de Oliveira, T R O de Freitas
{"title":"使用端粒长度测量和甲基化来了解分钟栉水母(一种小型化石哺乳动物)的核型多样化。","authors":"C A Matzenbacher,&nbsp;J Da Silva,&nbsp;A L H Garcia,&nbsp;R Kretschmer,&nbsp;M Cappetta,&nbsp;E H C de Oliveira,&nbsp;T R O de Freitas","doi":"10.1139/gen-2022-0018","DOIUrl":null,"url":null,"abstract":"<p><p>The genus <i>Ctenomys</i> has been widely used in karyotype evolution studies due to the variation in their diploid numbers. <i>Ctenomys minutus</i> is characterized by intraspecific variation in diploid number (2<i>n</i> = 42, 46, 48, and 50), which makes it an interesting model to investigate genomic rearrangements mechanisms that could lead to different cytotypes in this species. Thereupon, it has been already shown that DNA methylation may participate in chromosome structure. Therefore, we aimed to investigate whether telomeres and global DNA methylation had a role in the genome rearrangements that led to this variation in <i>C. minutus</i>. We also realized an analysis for the presence of intrachromosomal telomeric repeats (ITRs) by fluorescence in situ hybridization. Our study demonstrated that neither telomere length nor DNA methylation had significant differences among the cytotypes. However, if only females were considered, there were significant differences for telomere length and methylation. Young individuals, regardless of their cytotypes, had the most methylated DNA. Regarding the ITRs, we found a signal on chromosome 1 in 2<i>n</i> = 50b. No evidence was found that telomere length or methylation could have influenced chromosomal rearrangements, although new cytotypes seem to have emerged within the distribution of parental cytotypes by the accumulation of different chromosomal rearrangements.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using telomeric length measurements and methylation to understand the karyotype diversification of <i>Ctenomys minutus</i> (a small fossorial mammal).\",\"authors\":\"C A Matzenbacher,&nbsp;J Da Silva,&nbsp;A L H Garcia,&nbsp;R Kretschmer,&nbsp;M Cappetta,&nbsp;E H C de Oliveira,&nbsp;T R O de Freitas\",\"doi\":\"10.1139/gen-2022-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The genus <i>Ctenomys</i> has been widely used in karyotype evolution studies due to the variation in their diploid numbers. <i>Ctenomys minutus</i> is characterized by intraspecific variation in diploid number (2<i>n</i> = 42, 46, 48, and 50), which makes it an interesting model to investigate genomic rearrangements mechanisms that could lead to different cytotypes in this species. Thereupon, it has been already shown that DNA methylation may participate in chromosome structure. Therefore, we aimed to investigate whether telomeres and global DNA methylation had a role in the genome rearrangements that led to this variation in <i>C. minutus</i>. We also realized an analysis for the presence of intrachromosomal telomeric repeats (ITRs) by fluorescence in situ hybridization. Our study demonstrated that neither telomere length nor DNA methylation had significant differences among the cytotypes. However, if only females were considered, there were significant differences for telomere length and methylation. Young individuals, regardless of their cytotypes, had the most methylated DNA. Regarding the ITRs, we found a signal on chromosome 1 in 2<i>n</i> = 50b. No evidence was found that telomere length or methylation could have influenced chromosomal rearrangements, although new cytotypes seem to have emerged within the distribution of parental cytotypes by the accumulation of different chromosomal rearrangements.</p>\",\"PeriodicalId\":12809,\"journal\":{\"name\":\"Genome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/gen-2022-0018\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2022-0018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于其二倍体数量的差异,在核型进化研究中得到了广泛的应用。Ctenomys minuus的二倍体数量在种内发生变异(2n = 42、46、48和50),这使得它成为研究该物种中可能导致不同细胞型的基因组重排机制的一个有趣模型。因此,已经证明DNA甲基化可能参与染色体结构。因此,我们的目的是研究端粒和整体DNA甲基化是否在导致C. minuus这种变异的基因组重排中起作用。我们还实现了荧光原位杂交分析染色体内端粒重复序列(ITRs)的存在。我们的研究表明,端粒长度和DNA甲基化在细胞型之间都没有显著差异。然而,如果只考虑女性,端粒长度和甲基化有显著差异。无论细胞类型如何,年轻个体的DNA甲基化程度最高。关于itr,我们在2n = 50b的1号染色体上发现了一个信号。没有证据表明端粒长度或甲基化可能影响染色体重排,尽管新的细胞型似乎在亲本细胞型分布中通过不同染色体重排的积累而出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using telomeric length measurements and methylation to understand the karyotype diversification of Ctenomys minutus (a small fossorial mammal).

The genus Ctenomys has been widely used in karyotype evolution studies due to the variation in their diploid numbers. Ctenomys minutus is characterized by intraspecific variation in diploid number (2n = 42, 46, 48, and 50), which makes it an interesting model to investigate genomic rearrangements mechanisms that could lead to different cytotypes in this species. Thereupon, it has been already shown that DNA methylation may participate in chromosome structure. Therefore, we aimed to investigate whether telomeres and global DNA methylation had a role in the genome rearrangements that led to this variation in C. minutus. We also realized an analysis for the presence of intrachromosomal telomeric repeats (ITRs) by fluorescence in situ hybridization. Our study demonstrated that neither telomere length nor DNA methylation had significant differences among the cytotypes. However, if only females were considered, there were significant differences for telomere length and methylation. Young individuals, regardless of their cytotypes, had the most methylated DNA. Regarding the ITRs, we found a signal on chromosome 1 in 2n = 50b. No evidence was found that telomere length or methylation could have influenced chromosomal rearrangements, although new cytotypes seem to have emerged within the distribution of parental cytotypes by the accumulation of different chromosomal rearrangements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome
Genome 生物-生物工程与应用微生物
CiteScore
5.30
自引率
3.20%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信