{"title":"水光学击穿过程中低频受激拉曼散射的等离子共振","authors":"V. A. Babenko, N. F. Bunkin, A. A. Sychev","doi":"10.3103/S1541308X23030032","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>Experiments on time-dependent stimulated Raman scattering (SRS) and optical breakdown in the field of a picosecond laser pulse were performed with water samples containing gas nanobubbles (bubstons) with different concentrations. It is found that an optical breakdown in water contacting with atmosphere for a long time leads to the occurrence of an anomalously strong low-frequency SRS line at a frequency of ≈700 cm<sup>–1</sup>; its intensity significantly exceeds that of the SRS line at the frequency ≈3410 cm<sup>–1</sup>, which is due to the O–H stretching vibration of water molecules. A hypothesis about generation of a resonant plasmon during bubston breakdown in water was proposed to explain the observed effect. It is shown that the resonant plasmon was excited due to the pump wave beating and low-frequency Stokes scattering wave, shifted by the frequency of librational vibration of water molecules.</p></div></div>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 3","pages":"180 - 188"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic Resonance of Low-Frequency Stimulated Raman Scattering during Water Optical Breakdown\",\"authors\":\"V. A. Babenko, N. F. Bunkin, A. A. Sychev\",\"doi\":\"10.3103/S1541308X23030032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><h3>\\n <b>Abstract</b>—</h3><p>Experiments on time-dependent stimulated Raman scattering (SRS) and optical breakdown in the field of a picosecond laser pulse were performed with water samples containing gas nanobubbles (bubstons) with different concentrations. It is found that an optical breakdown in water contacting with atmosphere for a long time leads to the occurrence of an anomalously strong low-frequency SRS line at a frequency of ≈700 cm<sup>–1</sup>; its intensity significantly exceeds that of the SRS line at the frequency ≈3410 cm<sup>–1</sup>, which is due to the O–H stretching vibration of water molecules. A hypothesis about generation of a resonant plasmon during bubston breakdown in water was proposed to explain the observed effect. It is shown that the resonant plasmon was excited due to the pump wave beating and low-frequency Stokes scattering wave, shifted by the frequency of librational vibration of water molecules.</p></div></div>\",\"PeriodicalId\":732,\"journal\":{\"name\":\"Physics of Wave Phenomena\",\"volume\":\"31 3\",\"pages\":\"180 - 188\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Wave Phenomena\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1541308X23030032\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Phenomena","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1541308X23030032","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Plasmonic Resonance of Low-Frequency Stimulated Raman Scattering during Water Optical Breakdown
Abstract—
Experiments on time-dependent stimulated Raman scattering (SRS) and optical breakdown in the field of a picosecond laser pulse were performed with water samples containing gas nanobubbles (bubstons) with different concentrations. It is found that an optical breakdown in water contacting with atmosphere for a long time leads to the occurrence of an anomalously strong low-frequency SRS line at a frequency of ≈700 cm–1; its intensity significantly exceeds that of the SRS line at the frequency ≈3410 cm–1, which is due to the O–H stretching vibration of water molecules. A hypothesis about generation of a resonant plasmon during bubston breakdown in water was proposed to explain the observed effect. It is shown that the resonant plasmon was excited due to the pump wave beating and low-frequency Stokes scattering wave, shifted by the frequency of librational vibration of water molecules.
期刊介绍:
Physics of Wave Phenomena publishes original contributions in general and nonlinear wave theory, original experimental results in optics, acoustics and radiophysics. The fields of physics represented in this journal include nonlinear optics, acoustics, and radiophysics; nonlinear effects of any nature including nonlinear dynamics and chaos; phase transitions including light- and sound-induced; laser physics; optical and other spectroscopies; new instruments, methods, and measurements of wave and oscillatory processes; remote sensing of waves in natural media; wave interactions in biophysics, econophysics and other cross-disciplinary areas.