半简单对称Frobenius代数与Calabi-Yau范畴之间的等价

IF 0.5 4区 数学
Jan Hesse
{"title":"半简单对称Frobenius代数与Calabi-Yau范畴之间的等价","authors":"Jan Hesse","doi":"10.1007/s40062-017-0181-3","DOIUrl":null,"url":null,"abstract":"<p>We show that the bigroupoid of semisimple symmetric Frobenius algebras over an algebraically closed field and the bigroupoid of Calabi–Yau categories are equivalent. To this end, we construct a trace on the category of finitely-generated representations of a symmetric, semisimple Frobenius algebra, given by the composite of the Frobenius form with the Hattori-Stallings trace.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"13 1","pages":"251 - 272"},"PeriodicalIF":0.5000,"publicationDate":"2017-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-017-0181-3","citationCount":"6","resultStr":"{\"title\":\"An equivalence between semisimple symmetric Frobenius algebras and Calabi–Yau categories\",\"authors\":\"Jan Hesse\",\"doi\":\"10.1007/s40062-017-0181-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the bigroupoid of semisimple symmetric Frobenius algebras over an algebraically closed field and the bigroupoid of Calabi–Yau categories are equivalent. To this end, we construct a trace on the category of finitely-generated representations of a symmetric, semisimple Frobenius algebra, given by the composite of the Frobenius form with the Hattori-Stallings trace.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"13 1\",\"pages\":\"251 - 272\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-017-0181-3\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-017-0181-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-017-0181-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

证明了代数闭域上半简单对称Frobenius代数的双群似形与Calabi-Yau范畴的双群似形是等价的。为此,我们在对称的半简单Frobenius代数的有限生成表示范畴上构造了一条迹,由Frobenius形式与Hattori-Stallings迹的复合给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An equivalence between semisimple symmetric Frobenius algebras and Calabi–Yau categories

We show that the bigroupoid of semisimple symmetric Frobenius algebras over an algebraically closed field and the bigroupoid of Calabi–Yau categories are equivalent. To this end, we construct a trace on the category of finitely-generated representations of a symmetric, semisimple Frobenius algebra, given by the composite of the Frobenius form with the Hattori-Stallings trace.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信