Li-Hong Liu, Gilad Zorn, David G Castner, Raj Solanki, Michael M Lerner, Mingdi Yan
{"title":"一个简单和可扩展的途径,以晶圆尺寸的图案石墨烯。","authors":"Li-Hong Liu, Gilad Zorn, David G Castner, Raj Solanki, Michael M Lerner, Mingdi Yan","doi":"10.1039/C0JM00509F","DOIUrl":null,"url":null,"abstract":"<p><p>Producing large-scale graphene films with controllable patterns is an essential component of graphene-based nanodevice fabrication. Current methods of graphene pattern preparation involve either high cost, low throughput patterning processes or sophisticated instruments, hindering their large-scale fabrication and practical applications. We report a simple, effective, and reproducible approach for patterning graphene films with controllable feature sizes and shapes. The patterns were generated using a versatile photocoupling chemistry. Features from micrometres to centimetres were fabricated using a conventional photolithography process. This method is simple, general, and applicable to a wide range of substrates including silicon wafers, glass slides, and metal films.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"20 24","pages":"5041-5046"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C0JM00509F","citationCount":"82","resultStr":"{\"title\":\"A simple and scalable route to wafer-size patterned graphene.\",\"authors\":\"Li-Hong Liu, Gilad Zorn, David G Castner, Raj Solanki, Michael M Lerner, Mingdi Yan\",\"doi\":\"10.1039/C0JM00509F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Producing large-scale graphene films with controllable patterns is an essential component of graphene-based nanodevice fabrication. Current methods of graphene pattern preparation involve either high cost, low throughput patterning processes or sophisticated instruments, hindering their large-scale fabrication and practical applications. We report a simple, effective, and reproducible approach for patterning graphene films with controllable feature sizes and shapes. The patterns were generated using a versatile photocoupling chemistry. Features from micrometres to centimetres were fabricated using a conventional photolithography process. This method is simple, general, and applicable to a wide range of substrates including silicon wafers, glass slides, and metal films.</p>\",\"PeriodicalId\":16297,\"journal\":{\"name\":\"Journal of Materials Chemistry\",\"volume\":\"20 24\",\"pages\":\"5041-5046\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/C0JM00509F\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/C0JM00509F\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/C0JM00509F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple and scalable route to wafer-size patterned graphene.
Producing large-scale graphene films with controllable patterns is an essential component of graphene-based nanodevice fabrication. Current methods of graphene pattern preparation involve either high cost, low throughput patterning processes or sophisticated instruments, hindering their large-scale fabrication and practical applications. We report a simple, effective, and reproducible approach for patterning graphene films with controllable feature sizes and shapes. The patterns were generated using a versatile photocoupling chemistry. Features from micrometres to centimetres were fabricated using a conventional photolithography process. This method is simple, general, and applicable to a wide range of substrates including silicon wafers, glass slides, and metal films.