Gianluca Puglisi, Marco Montemagno, Regina Denaro, Giuseppe Condorelli, Vincenzo Fabrizio Caruso, Andrea Vescio, Gianluca Testa, Vito Pavone
{"title":"3d打印模型与CT扫描和x射线成像在肱骨近端骨折诊断评估中的应用:一项三盲观察者间可靠性比较研究。","authors":"Gianluca Puglisi, Marco Montemagno, Regina Denaro, Giuseppe Condorelli, Vincenzo Fabrizio Caruso, Andrea Vescio, Gianluca Testa, Vito Pavone","doi":"10.1155/2022/5863813","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Proximal humerus fractures (PHFs) are one of the most frequent fractures in the elderly and are the third most fractures after those of the hip and wrist. PHFs are assessed clinically through conventionally standard imaging (X-ray and computed tomography (CT) scans). The present study aims to conduct the diagnostic evaluation and therapeutic efficacy of the 3D-printed models (3DPMs) for the PHFs, compared with the standard imaging.</p><p><strong>Objectives: </strong>In terms of fracture classification and surgical indication, PHFs have poor interobserver agreement between orthopedic surgeons using traditional imaging such as X-rays and CT scan. Our objective is to compare interobserver reliability in diagnostic evaluation of PHFs using 3DPMs compared to traditional imaging.</p><p><strong>Methods: </strong>The inclusion criteria were elders aged >65 years, fracture classification AO/OTA 11 B and 11 C, and no pathological fractures or polytrauma. In addition, 9 PHFs were assessed by 6 evaluators through a questionnaire and double-blinded administered for each imaging (X-ray and CT scan) and 3DPMs for each fracture. The questionnaire for each method regarded Neer classification, Hertel classification, treatment indication (IT), and surgical technique (ST). Interobserver reliability was calculated through the intraclass correlation coefficient (ICC).</p><p><strong>Results: </strong>Nine patients with PHF were included in the study (66% female). The Neer and Hertel classifications between imaging types had similar ICC values between raters with no statistical differences. IT reliability using CT scan and 3DPMs (ICC = 1; (<i>p</i>=0.116)) assessed better agreement compared with X-rays IT. The ST reliability using 3DPMs (ICC = 0.755; <i>p</i>=0.002) was statistically superior to traditional imaging (ST-RX ICC = -0.004 (<i>p</i>=0.454); ST-CT ICC = 0.429 (<i>p</i>=0.116)).</p><p><strong>Conclusion: </strong>Classification systems like Neer and Hertel offer poor reliability between operators. The 3DPMs for evaluating diagnostics are comparable to CT images but superior to the surgical technique agreement. The application of 3DPMs is effective for preoperative fracture planning and the modeling of patient-specific hardware.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208975/pdf/","citationCount":"2","resultStr":"{\"title\":\"3D-Printed Models versus CT Scan and X-Rays Imaging in the Diagnostic Evaluation of Proximal Humerus Fractures: A Triple-Blind Interobserver Reliability Comparison Study.\",\"authors\":\"Gianluca Puglisi, Marco Montemagno, Regina Denaro, Giuseppe Condorelli, Vincenzo Fabrizio Caruso, Andrea Vescio, Gianluca Testa, Vito Pavone\",\"doi\":\"10.1155/2022/5863813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Proximal humerus fractures (PHFs) are one of the most frequent fractures in the elderly and are the third most fractures after those of the hip and wrist. PHFs are assessed clinically through conventionally standard imaging (X-ray and computed tomography (CT) scans). The present study aims to conduct the diagnostic evaluation and therapeutic efficacy of the 3D-printed models (3DPMs) for the PHFs, compared with the standard imaging.</p><p><strong>Objectives: </strong>In terms of fracture classification and surgical indication, PHFs have poor interobserver agreement between orthopedic surgeons using traditional imaging such as X-rays and CT scan. Our objective is to compare interobserver reliability in diagnostic evaluation of PHFs using 3DPMs compared to traditional imaging.</p><p><strong>Methods: </strong>The inclusion criteria were elders aged >65 years, fracture classification AO/OTA 11 B and 11 C, and no pathological fractures or polytrauma. In addition, 9 PHFs were assessed by 6 evaluators through a questionnaire and double-blinded administered for each imaging (X-ray and CT scan) and 3DPMs for each fracture. The questionnaire for each method regarded Neer classification, Hertel classification, treatment indication (IT), and surgical technique (ST). Interobserver reliability was calculated through the intraclass correlation coefficient (ICC).</p><p><strong>Results: </strong>Nine patients with PHF were included in the study (66% female). The Neer and Hertel classifications between imaging types had similar ICC values between raters with no statistical differences. IT reliability using CT scan and 3DPMs (ICC = 1; (<i>p</i>=0.116)) assessed better agreement compared with X-rays IT. The ST reliability using 3DPMs (ICC = 0.755; <i>p</i>=0.002) was statistically superior to traditional imaging (ST-RX ICC = -0.004 (<i>p</i>=0.454); ST-CT ICC = 0.429 (<i>p</i>=0.116)).</p><p><strong>Conclusion: </strong>Classification systems like Neer and Hertel offer poor reliability between operators. The 3DPMs for evaluating diagnostics are comparable to CT images but superior to the surgical technique agreement. The application of 3DPMs is effective for preoperative fracture planning and the modeling of patient-specific hardware.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208975/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5863813\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5863813","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
3D-Printed Models versus CT Scan and X-Rays Imaging in the Diagnostic Evaluation of Proximal Humerus Fractures: A Triple-Blind Interobserver Reliability Comparison Study.
Background: Proximal humerus fractures (PHFs) are one of the most frequent fractures in the elderly and are the third most fractures after those of the hip and wrist. PHFs are assessed clinically through conventionally standard imaging (X-ray and computed tomography (CT) scans). The present study aims to conduct the diagnostic evaluation and therapeutic efficacy of the 3D-printed models (3DPMs) for the PHFs, compared with the standard imaging.
Objectives: In terms of fracture classification and surgical indication, PHFs have poor interobserver agreement between orthopedic surgeons using traditional imaging such as X-rays and CT scan. Our objective is to compare interobserver reliability in diagnostic evaluation of PHFs using 3DPMs compared to traditional imaging.
Methods: The inclusion criteria were elders aged >65 years, fracture classification AO/OTA 11 B and 11 C, and no pathological fractures or polytrauma. In addition, 9 PHFs were assessed by 6 evaluators through a questionnaire and double-blinded administered for each imaging (X-ray and CT scan) and 3DPMs for each fracture. The questionnaire for each method regarded Neer classification, Hertel classification, treatment indication (IT), and surgical technique (ST). Interobserver reliability was calculated through the intraclass correlation coefficient (ICC).
Results: Nine patients with PHF were included in the study (66% female). The Neer and Hertel classifications between imaging types had similar ICC values between raters with no statistical differences. IT reliability using CT scan and 3DPMs (ICC = 1; (p=0.116)) assessed better agreement compared with X-rays IT. The ST reliability using 3DPMs (ICC = 0.755; p=0.002) was statistically superior to traditional imaging (ST-RX ICC = -0.004 (p=0.454); ST-CT ICC = 0.429 (p=0.116)).
Conclusion: Classification systems like Neer and Hertel offer poor reliability between operators. The 3DPMs for evaluating diagnostics are comparable to CT images but superior to the surgical technique agreement. The application of 3DPMs is effective for preoperative fracture planning and the modeling of patient-specific hardware.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.