映射空间和r补全

IF 0.5 4区 数学
David Blanc, Debasis Sen
{"title":"映射空间和r补全","authors":"David Blanc,&nbsp;Debasis Sen","doi":"10.1007/s40062-018-0196-4","DOIUrl":null,"url":null,"abstract":"<p>We study the questions of how to recognize when a simplicial set <i>X</i> is of the form <span>\\(X={\\text {map}}_{*}({\\mathbf {Y}},{\\mathbf {A}})\\)</span>, for a given space <span>\\({\\mathbf {A}}\\)</span>, and how to recover <span>\\({\\mathbf {Y}}\\)</span> from <i>X</i>, if so. A full answer is provided when <span>\\({\\mathbf {A}}={\\mathbf {K}}({R},{n})\\)</span>, for <span>\\(R=\\mathbb F_{p}\\)</span> or <span>\\(\\mathbb Q\\)</span>, in terms of a <i>mapping algebra </i> structure on <i>X</i> (defined in terms of product-preserving simplicial functors out of a certain simplicially enriched sketch <span>\\(\\varvec{\\Theta }\\)</span>). In addition, when <span>\\({\\mathbf {A}}=\\Omega ^{\\infty }{\\mathcal {A}}\\)</span> for a suitable connective ring spectrum <span>\\({\\mathcal {A}}\\)</span>, we can <i>recover</i> <span>\\({\\mathbf {Y}}\\)</span> from <span>\\({\\text {map}}_{*}({\\mathbf {Y}},{\\mathbf {A}})\\)</span>, given such a mapping algebra structure. This can be made more explicit when <span>\\({\\mathbf {A}}={\\mathbf {K}}({R},{n})\\)</span> for some commutative ring <i>R</i>. Finally, our methods provide a new way of looking at the classical Bousfield–Kan <i>R</i>-completion.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"13 3","pages":"635 - 671"},"PeriodicalIF":0.5000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0196-4","citationCount":"8","resultStr":"{\"title\":\"Mapping spaces and R-completion\",\"authors\":\"David Blanc,&nbsp;Debasis Sen\",\"doi\":\"10.1007/s40062-018-0196-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the questions of how to recognize when a simplicial set <i>X</i> is of the form <span>\\\\(X={\\\\text {map}}_{*}({\\\\mathbf {Y}},{\\\\mathbf {A}})\\\\)</span>, for a given space <span>\\\\({\\\\mathbf {A}}\\\\)</span>, and how to recover <span>\\\\({\\\\mathbf {Y}}\\\\)</span> from <i>X</i>, if so. A full answer is provided when <span>\\\\({\\\\mathbf {A}}={\\\\mathbf {K}}({R},{n})\\\\)</span>, for <span>\\\\(R=\\\\mathbb F_{p}\\\\)</span> or <span>\\\\(\\\\mathbb Q\\\\)</span>, in terms of a <i>mapping algebra </i> structure on <i>X</i> (defined in terms of product-preserving simplicial functors out of a certain simplicially enriched sketch <span>\\\\(\\\\varvec{\\\\Theta }\\\\)</span>). In addition, when <span>\\\\({\\\\mathbf {A}}=\\\\Omega ^{\\\\infty }{\\\\mathcal {A}}\\\\)</span> for a suitable connective ring spectrum <span>\\\\({\\\\mathcal {A}}\\\\)</span>, we can <i>recover</i> <span>\\\\({\\\\mathbf {Y}}\\\\)</span> from <span>\\\\({\\\\text {map}}_{*}({\\\\mathbf {Y}},{\\\\mathbf {A}})\\\\)</span>, given such a mapping algebra structure. This can be made more explicit when <span>\\\\({\\\\mathbf {A}}={\\\\mathbf {K}}({R},{n})\\\\)</span> for some commutative ring <i>R</i>. Finally, our methods provide a new way of looking at the classical Bousfield–Kan <i>R</i>-completion.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"13 3\",\"pages\":\"635 - 671\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-018-0196-4\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-018-0196-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0196-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们研究了如何识别一个简单集合X的形式 \(X={\text {map}}_{*}({\mathbf {Y}},{\mathbf {A}})\),对于给定的空间 \({\mathbf {A}}\),以及如何恢复 \({\mathbf {Y}}\) 从X,如果有的话。提供完整的答案 \({\mathbf {A}}={\mathbf {K}}({R},{n})\),为 \(R=\mathbb F_{p}\) 或 \(\mathbb Q\),表示X上的映射代数结构(定义为从某个简富草图中得到的保积简函子) \(\varvec{\Theta }\)). 此外,当 \({\mathbf {A}}=\Omega ^{\infty }{\mathcal {A}}\) 得到合适的连接环谱 \({\mathcal {A}}\),我们可以恢复 \({\mathbf {Y}}\) 从 \({\text {map}}_{*}({\mathbf {Y}},{\mathbf {A}})\),给出这样一个映射代数结构。可以更明确地说明 \({\mathbf {A}}={\mathbf {K}}({R},{n})\) 最后,我们的方法提供了一种观察经典Bousfield-Kan r补全的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping spaces and R-completion

We study the questions of how to recognize when a simplicial set X is of the form \(X={\text {map}}_{*}({\mathbf {Y}},{\mathbf {A}})\), for a given space \({\mathbf {A}}\), and how to recover \({\mathbf {Y}}\) from X, if so. A full answer is provided when \({\mathbf {A}}={\mathbf {K}}({R},{n})\), for \(R=\mathbb F_{p}\) or \(\mathbb Q\), in terms of a mapping algebra structure on X (defined in terms of product-preserving simplicial functors out of a certain simplicially enriched sketch \(\varvec{\Theta }\)). In addition, when \({\mathbf {A}}=\Omega ^{\infty }{\mathcal {A}}\) for a suitable connective ring spectrum \({\mathcal {A}}\), we can recover \({\mathbf {Y}}\) from \({\text {map}}_{*}({\mathbf {Y}},{\mathbf {A}})\), given such a mapping algebra structure. This can be made more explicit when \({\mathbf {A}}={\mathbf {K}}({R},{n})\) for some commutative ring R. Finally, our methods provide a new way of looking at the classical Bousfield–Kan R-completion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信