着丝粒驱动:模型系统及实验进展。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2022-09-01 Epub Date: 2022-06-22 DOI:10.1007/s10577-022-09696-3
Damian Dudka, Michael A Lampson
{"title":"着丝粒驱动:模型系统及实验进展。","authors":"Damian Dudka,&nbsp;Michael A Lampson","doi":"10.1007/s10577-022-09696-3","DOIUrl":null,"url":null,"abstract":"<p><p>Centromeres connect chromosomes and spindle microtubules to ensure faithful chromosome segregation. Paradoxically, despite this conserved function, centromeric DNA evolves rapidly and centromeric proteins show signatures of positive selection. The centromere drive hypothesis proposes that centromeric DNA can act like a selfish genetic element and drive non-Mendelian segregation during asymmetric female meiosis. Resulting fitness costs lead to genetic conflict with the rest of the genome and impose a selective pressure for centromeric proteins to adapt by suppressing the costs. Here, we describe experimental model systems for centromere drive in yellow monkeyflowers and mice, summarize key findings demonstrating centromere drive, and explain molecular mechanisms. We further discuss efforts to test if centromeric proteins are involved in suppressing drive-associated fitness costs, highlight a model for centromere drive and suppression in mice, and put forth outstanding questions for future research.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9567806/pdf/nihms-1842320.pdf","citationCount":"8","resultStr":"{\"title\":\"Centromere drive: model systems and experimental progress.\",\"authors\":\"Damian Dudka,&nbsp;Michael A Lampson\",\"doi\":\"10.1007/s10577-022-09696-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Centromeres connect chromosomes and spindle microtubules to ensure faithful chromosome segregation. Paradoxically, despite this conserved function, centromeric DNA evolves rapidly and centromeric proteins show signatures of positive selection. The centromere drive hypothesis proposes that centromeric DNA can act like a selfish genetic element and drive non-Mendelian segregation during asymmetric female meiosis. Resulting fitness costs lead to genetic conflict with the rest of the genome and impose a selective pressure for centromeric proteins to adapt by suppressing the costs. Here, we describe experimental model systems for centromere drive in yellow monkeyflowers and mice, summarize key findings demonstrating centromere drive, and explain molecular mechanisms. We further discuss efforts to test if centromeric proteins are involved in suppressing drive-associated fitness costs, highlight a model for centromere drive and suppression in mice, and put forth outstanding questions for future research.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9567806/pdf/nihms-1842320.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-022-09696-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-022-09696-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

摘要

着丝粒连接染色体和纺锤体微管,确保染色体分离。矛盾的是,尽管有这种保守的功能,着丝粒DNA进化迅速,着丝粒蛋白质显示出正选择的特征。着丝粒驱动假说提出着丝粒DNA可以像一个自私的遗传元件一样,在不对称雌性减数分裂过程中驱动非孟德尔分离。由此产生的适应性成本导致与基因组其他部分的遗传冲突,并通过抑制成本对着丝粒蛋白施加选择压力以适应。在此,我们描述了黄猴花和小鼠的着丝粒驱动的实验模型系统,总结了证明着丝粒驱动的关键发现,并解释了分子机制。我们进一步讨论了测试着丝粒蛋白是否参与抑制驱动相关的适应成本的努力,重点介绍了小鼠着丝粒驱动和抑制的模型,并提出了未来研究的突出问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Centromere drive: model systems and experimental progress.

Centromere drive: model systems and experimental progress.

Centromeres connect chromosomes and spindle microtubules to ensure faithful chromosome segregation. Paradoxically, despite this conserved function, centromeric DNA evolves rapidly and centromeric proteins show signatures of positive selection. The centromere drive hypothesis proposes that centromeric DNA can act like a selfish genetic element and drive non-Mendelian segregation during asymmetric female meiosis. Resulting fitness costs lead to genetic conflict with the rest of the genome and impose a selective pressure for centromeric proteins to adapt by suppressing the costs. Here, we describe experimental model systems for centromere drive in yellow monkeyflowers and mice, summarize key findings demonstrating centromere drive, and explain molecular mechanisms. We further discuss efforts to test if centromeric proteins are involved in suppressing drive-associated fitness costs, highlight a model for centromere drive and suppression in mice, and put forth outstanding questions for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信