对受结果误分类影响的现状数据进行非参数和半参数分析。

Victor G Sal Y Rosas, James P Hughes
{"title":"对受结果误分类影响的现状数据进行非参数和半参数分析。","authors":"Victor G Sal Y Rosas, James P Hughes","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we present nonparametric and semiparametric methods to analyze current status data subject to outcome misclassification. Our methods use nonparametric maximum likelihood estimation (NPMLE) to estimate the distribution function of the failure time when sensitivity and specificity are known and may vary among subgroups. A nonparametric test is proposed for the two sample hypothesis testing. In regression analysis, we apply the Cox proportional hazard model and likelihood ratio based confidence intervals for the regression coefficients are proposed. Our methods are motivated and demonstrated by data collected from an infectious disease study in Seattle, WA.</p>","PeriodicalId":74867,"journal":{"name":"Statistical communications in infectious diseases","volume":"2010 ","pages":"364"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298195/pdf/nihms358998.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonparametric and Semiparametric Analysis of Current Status Data Subject to Outcome Misclassification.\",\"authors\":\"Victor G Sal Y Rosas, James P Hughes\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we present nonparametric and semiparametric methods to analyze current status data subject to outcome misclassification. Our methods use nonparametric maximum likelihood estimation (NPMLE) to estimate the distribution function of the failure time when sensitivity and specificity are known and may vary among subgroups. A nonparametric test is proposed for the two sample hypothesis testing. In regression analysis, we apply the Cox proportional hazard model and likelihood ratio based confidence intervals for the regression coefficients are proposed. Our methods are motivated and demonstrated by data collected from an infectious disease study in Seattle, WA.</p>\",\"PeriodicalId\":74867,\"journal\":{\"name\":\"Statistical communications in infectious diseases\",\"volume\":\"2010 \",\"pages\":\"364\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298195/pdf/nihms358998.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical communications in infectious diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical communications in infectious diseases","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们提出了非参数和半参数方法来分析受结果误分类影响的现状数据。我们的方法使用非参数最大似然估计(NPMLE)来估计失败时间的分布函数,前提是敏感性和特异性是已知的,并且在不同的亚组之间可能存在差异。我们还提出了一种用于双样本假设检验的非参数检验方法。在回归分析中,我们应用了 Cox 比例危险模型,并提出了基于似然比的回归系数置信区间。我们从华盛顿州西雅图市的一项传染病研究中收集数据,对我们的方法进行了说明和演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonparametric and Semiparametric Analysis of Current Status Data Subject to Outcome Misclassification.

Nonparametric and Semiparametric Analysis of Current Status Data Subject to Outcome Misclassification.

In this article, we present nonparametric and semiparametric methods to analyze current status data subject to outcome misclassification. Our methods use nonparametric maximum likelihood estimation (NPMLE) to estimate the distribution function of the failure time when sensitivity and specificity are known and may vary among subgroups. A nonparametric test is proposed for the two sample hypothesis testing. In regression analysis, we apply the Cox proportional hazard model and likelihood ratio based confidence intervals for the regression coefficients are proposed. Our methods are motivated and demonstrated by data collected from an infectious disease study in Seattle, WA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信