{"title":"离散时间通信连续动态网络的同步。","authors":"Yan-Wu Wang, Jiang-Wen Xiao, Changyun Wen, Zhi-Hong Guan","doi":"10.1109/TNN.2011.2171501","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, synchronization of continuous dynamical networks with discrete-time communications is studied. Though the dynamical behavior of each node is continuous-time, the communications between every two different nodes are discrete-time, i.e., they are active only at some discrete time instants. Moreover, the communication intervals between every two communication instants can be uncertain and variable. By choosing a piecewise Lyapunov-Krasovskii functional to govern the characteristics of the discrete communication instants and by utilizing a convex combination technique, a synchronization criterion is derived in terms of linear matrix inequalities with an upper bound for the communication intervals obtained. The results extend and improve upon earlier work. Simulation results show the effectiveness of the proposed communication scheme. Some relationships between the allowable upper bound of communication intervals and the coupling strength of the network are illustrated through simulations on a fully connected network, a star-like network, and a nearest neighbor network.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":" ","pages":"1979-86"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2171501","citationCount":"52","resultStr":"{\"title\":\"Synchronization of continuous dynamical networks with discrete-time communications.\",\"authors\":\"Yan-Wu Wang, Jiang-Wen Xiao, Changyun Wen, Zhi-Hong Guan\",\"doi\":\"10.1109/TNN.2011.2171501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, synchronization of continuous dynamical networks with discrete-time communications is studied. Though the dynamical behavior of each node is continuous-time, the communications between every two different nodes are discrete-time, i.e., they are active only at some discrete time instants. Moreover, the communication intervals between every two communication instants can be uncertain and variable. By choosing a piecewise Lyapunov-Krasovskii functional to govern the characteristics of the discrete communication instants and by utilizing a convex combination technique, a synchronization criterion is derived in terms of linear matrix inequalities with an upper bound for the communication intervals obtained. The results extend and improve upon earlier work. Simulation results show the effectiveness of the proposed communication scheme. Some relationships between the allowable upper bound of communication intervals and the coupling strength of the network are illustrated through simulations on a fully connected network, a star-like network, and a nearest neighbor network.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\" \",\"pages\":\"1979-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2171501\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2171501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2171501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Synchronization of continuous dynamical networks with discrete-time communications.
In this paper, synchronization of continuous dynamical networks with discrete-time communications is studied. Though the dynamical behavior of each node is continuous-time, the communications between every two different nodes are discrete-time, i.e., they are active only at some discrete time instants. Moreover, the communication intervals between every two communication instants can be uncertain and variable. By choosing a piecewise Lyapunov-Krasovskii functional to govern the characteristics of the discrete communication instants and by utilizing a convex combination technique, a synchronization criterion is derived in terms of linear matrix inequalities with an upper bound for the communication intervals obtained. The results extend and improve upon earlier work. Simulation results show the effectiveness of the proposed communication scheme. Some relationships between the allowable upper bound of communication intervals and the coupling strength of the network are illustrated through simulations on a fully connected network, a star-like network, and a nearest neighbor network.