非线性混合系统辨识的缩减核模型。

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-10-25 DOI:10.1109/TNN.2011.2171361
Van Luong Le, Grard Bloch, Fabien Lauer
{"title":"非线性混合系统辨识的缩减核模型。","authors":"Van Luong Le,&nbsp;Grard Bloch,&nbsp;Fabien Lauer","doi":"10.1109/TNN.2011.2171361","DOIUrl":null,"url":null,"abstract":"<p><p>This brief paper focuses on the identification of nonlinear hybrid dynamical systems, i.e., systems switching between multiple nonlinear dynamical behaviors. Thus the aim is to learn an ensemble of submodels from a single set of input-output data in a regression setting with no prior knowledge on the grouping of the data points into similar behaviors. To be able to approximate arbitrary nonlinearities, kernel submodels are considered. However, in order to maintain efficiency when applying the method to large data sets, a preprocessing step is required in order to fix the submodel sizes and limit the number of optimization variables. This brief paper proposes four approaches, respectively inspired by the fixed-size least-squares support vector machines, the feature vector selection method, the kernel principal component regression and a modification of the latter, in order to deal with this issue and build sparse kernel submodels. These are compared in numerical experiments, which show that the proposed approach achieves the simultaneous classification of data points and approximation of the nonlinear behaviors in an efficient and accurate manner.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":" ","pages":"2398-405"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2171361","citationCount":"37","resultStr":"{\"title\":\"Reduced-size kernel models for nonlinear hybrid system identification.\",\"authors\":\"Van Luong Le,&nbsp;Grard Bloch,&nbsp;Fabien Lauer\",\"doi\":\"10.1109/TNN.2011.2171361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This brief paper focuses on the identification of nonlinear hybrid dynamical systems, i.e., systems switching between multiple nonlinear dynamical behaviors. Thus the aim is to learn an ensemble of submodels from a single set of input-output data in a regression setting with no prior knowledge on the grouping of the data points into similar behaviors. To be able to approximate arbitrary nonlinearities, kernel submodels are considered. However, in order to maintain efficiency when applying the method to large data sets, a preprocessing step is required in order to fix the submodel sizes and limit the number of optimization variables. This brief paper proposes four approaches, respectively inspired by the fixed-size least-squares support vector machines, the feature vector selection method, the kernel principal component regression and a modification of the latter, in order to deal with this issue and build sparse kernel submodels. These are compared in numerical experiments, which show that the proposed approach achieves the simultaneous classification of data points and approximation of the nonlinear behaviors in an efficient and accurate manner.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\" \",\"pages\":\"2398-405\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2171361\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2171361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2171361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文主要研究非线性混合动力系统的辨识问题,即在多个非线性动力行为之间切换的系统。因此,目标是在回归设置中从一组输入输出数据中学习子模型的集合,而不需要先验知识将数据点分组为相似的行为。为了能够近似任意非线性,考虑了核子模型。然而,为了在将该方法应用于大型数据集时保持效率,需要进行预处理步骤,以固定子模型大小并限制优化变量的数量。本文以固定大小最小二乘支持向量机、特征向量选择法、核主成分回归及其改进为灵感,提出了四种方法来处理这一问题,并建立了稀疏核子模型。数值实验结果表明,该方法能够有效、准确地实现数据点的分类和非线性行为的逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced-size kernel models for nonlinear hybrid system identification.

This brief paper focuses on the identification of nonlinear hybrid dynamical systems, i.e., systems switching between multiple nonlinear dynamical behaviors. Thus the aim is to learn an ensemble of submodels from a single set of input-output data in a regression setting with no prior knowledge on the grouping of the data points into similar behaviors. To be able to approximate arbitrary nonlinearities, kernel submodels are considered. However, in order to maintain efficiency when applying the method to large data sets, a preprocessing step is required in order to fix the submodel sizes and limit the number of optimization variables. This brief paper proposes four approaches, respectively inspired by the fixed-size least-squares support vector machines, the feature vector selection method, the kernel principal component regression and a modification of the latter, in order to deal with this issue and build sparse kernel submodels. These are compared in numerical experiments, which show that the proposed approach achieves the simultaneous classification of data points and approximation of the nonlinear behaviors in an efficient and accurate manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信