Luka Teslic, Benjamin Hartmann, Oliver Nelles, Igor Skrjanc
{"title":"基于Gustafson-Kessel模糊聚类和监督局部模型网络学习的药物吸收光谱非线性系统辨识。","authors":"Luka Teslic, Benjamin Hartmann, Oliver Nelles, Igor Skrjanc","doi":"10.1109/TNN.2011.2170093","DOIUrl":null,"url":null,"abstract":"<p><p>This paper deals with the problem of fuzzy nonlinear model identification in the framework of a local model network (LMN). A new iterative identification approach is proposed, where supervised and unsupervised learning are combined to optimize the structure of the LMN. For the purpose of fitting the cluster-centers to the process nonlinearity, the Gustafsson-Kessel (GK) fuzzy clustering, i.e., unsupervised learning, is applied. In combination with the LMN learning procedure, a new incremental method to define the number and the initial locations of the cluster centers for the GK clustering algorithm is proposed. Each data cluster corresponds to a local region of the process and is modeled with a local linear model. Since the validity functions are calculated from the fuzzy covariance matrices of the clusters, they are highly adaptable and thus the process can be described with a very sparse amount of local models, i.e., with a parsimonious LMN model. The proposed method for constructing the LMN is finally tested on a drug absorption spectral process and compared to two other methods, namely, Lolimot and Hilomot. The comparison between the experimental results when using each method shows the usefulness of the proposed identification algorithm.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":" ","pages":"1941-51"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2170093","citationCount":"50","resultStr":"{\"title\":\"Nonlinear system identification by Gustafson-Kessel fuzzy clustering and supervised local model network learning for the drug absorption spectra process.\",\"authors\":\"Luka Teslic, Benjamin Hartmann, Oliver Nelles, Igor Skrjanc\",\"doi\":\"10.1109/TNN.2011.2170093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper deals with the problem of fuzzy nonlinear model identification in the framework of a local model network (LMN). A new iterative identification approach is proposed, where supervised and unsupervised learning are combined to optimize the structure of the LMN. For the purpose of fitting the cluster-centers to the process nonlinearity, the Gustafsson-Kessel (GK) fuzzy clustering, i.e., unsupervised learning, is applied. In combination with the LMN learning procedure, a new incremental method to define the number and the initial locations of the cluster centers for the GK clustering algorithm is proposed. Each data cluster corresponds to a local region of the process and is modeled with a local linear model. Since the validity functions are calculated from the fuzzy covariance matrices of the clusters, they are highly adaptable and thus the process can be described with a very sparse amount of local models, i.e., with a parsimonious LMN model. The proposed method for constructing the LMN is finally tested on a drug absorption spectral process and compared to two other methods, namely, Lolimot and Hilomot. The comparison between the experimental results when using each method shows the usefulness of the proposed identification algorithm.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\" \",\"pages\":\"1941-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2170093\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2170093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2170093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear system identification by Gustafson-Kessel fuzzy clustering and supervised local model network learning for the drug absorption spectra process.
This paper deals with the problem of fuzzy nonlinear model identification in the framework of a local model network (LMN). A new iterative identification approach is proposed, where supervised and unsupervised learning are combined to optimize the structure of the LMN. For the purpose of fitting the cluster-centers to the process nonlinearity, the Gustafsson-Kessel (GK) fuzzy clustering, i.e., unsupervised learning, is applied. In combination with the LMN learning procedure, a new incremental method to define the number and the initial locations of the cluster centers for the GK clustering algorithm is proposed. Each data cluster corresponds to a local region of the process and is modeled with a local linear model. Since the validity functions are calculated from the fuzzy covariance matrices of the clusters, they are highly adaptable and thus the process can be described with a very sparse amount of local models, i.e., with a parsimonious LMN model. The proposed method for constructing the LMN is finally tested on a drug absorption spectral process and compared to two other methods, namely, Lolimot and Hilomot. The comparison between the experimental results when using each method shows the usefulness of the proposed identification algorithm.