Shaoning Pang, Tao Ban, Youki Kadobayashi, Nikola K Kasabov
{"title":"LDA合并与拆分及其在多智能体合作学习和系统变更中的应用。","authors":"Shaoning Pang, Tao Ban, Youki Kadobayashi, Nikola K Kasabov","doi":"10.1109/TSMCB.2011.2169056","DOIUrl":null,"url":null,"abstract":"<p><p>To adapt linear discriminant analysis (LDA) to real-world applications, there is a pressing need to equip it with an incremental learning ability to integrate knowledge presented by one-pass data streams, a functionality to join multiple LDA models to make the knowledge sharing between independent learning agents more efficient, and a forgetting functionality to avoid reconstruction of the overall discriminant eigenspace caused by some irregular changes. To this end, we introduce two adaptive LDA learning methods: LDA merging and LDA splitting. These provide the benefits of ability of online learning with one-pass data streams, retained class separability identical to the batch learning method, high efficiency for knowledge sharing due to condensed knowledge representation by the eigenspace model, and more preferable time and storage costs than traditional approaches under common application conditions. These properties are validated by experiments on a benchmark face image data set. By a case study on the application of the proposed method to multiagent cooperative learning and system alternation of a face recognition system, we further clarified the adaptability of the proposed methods to complex dynamic learning tasks.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"552-64"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2011.2169056","citationCount":"18","resultStr":"{\"title\":\"LDA merging and splitting with applications to multiagent cooperative learning and system alteration.\",\"authors\":\"Shaoning Pang, Tao Ban, Youki Kadobayashi, Nikola K Kasabov\",\"doi\":\"10.1109/TSMCB.2011.2169056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To adapt linear discriminant analysis (LDA) to real-world applications, there is a pressing need to equip it with an incremental learning ability to integrate knowledge presented by one-pass data streams, a functionality to join multiple LDA models to make the knowledge sharing between independent learning agents more efficient, and a forgetting functionality to avoid reconstruction of the overall discriminant eigenspace caused by some irregular changes. To this end, we introduce two adaptive LDA learning methods: LDA merging and LDA splitting. These provide the benefits of ability of online learning with one-pass data streams, retained class separability identical to the batch learning method, high efficiency for knowledge sharing due to condensed knowledge representation by the eigenspace model, and more preferable time and storage costs than traditional approaches under common application conditions. These properties are validated by experiments on a benchmark face image data set. By a case study on the application of the proposed method to multiagent cooperative learning and system alternation of a face recognition system, we further clarified the adaptability of the proposed methods to complex dynamic learning tasks.</p>\",\"PeriodicalId\":55006,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"volume\":\" \",\"pages\":\"552-64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TSMCB.2011.2169056\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCB.2011.2169056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2011.2169056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
LDA merging and splitting with applications to multiagent cooperative learning and system alteration.
To adapt linear discriminant analysis (LDA) to real-world applications, there is a pressing need to equip it with an incremental learning ability to integrate knowledge presented by one-pass data streams, a functionality to join multiple LDA models to make the knowledge sharing between independent learning agents more efficient, and a forgetting functionality to avoid reconstruction of the overall discriminant eigenspace caused by some irregular changes. To this end, we introduce two adaptive LDA learning methods: LDA merging and LDA splitting. These provide the benefits of ability of online learning with one-pass data streams, retained class separability identical to the batch learning method, high efficiency for knowledge sharing due to condensed knowledge representation by the eigenspace model, and more preferable time and storage costs than traditional approaches under common application conditions. These properties are validated by experiments on a benchmark face image data set. By a case study on the application of the proposed method to multiagent cooperative learning and system alternation of a face recognition system, we further clarified the adaptability of the proposed methods to complex dynamic learning tasks.