{"title":"用于在人体内运作的微型工厂的纳米机器人和由细菌驱动的机器人。","authors":"Sylvain Martel","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The exploitation of the properties at the nanoscale enables novel nanorobotic-based instrumented platforms and techniques. Here, some unique interdisciplinary examples from our research laboratory are briefly described providing some insights about the possibilities and the huge potentials of nanorobotics with main areas of applications in medicine and bioengineering, including supporting new robotic platforms for micro- and nano-manufacturing and high-throughput automatic operations at the nanoscale. For several applications where specifications cannot be met using modern technologies, especially at such small scales, a highly interdisciplinary approach integrating biological components in engineered systems becomes an essential part of the development process.</p>","PeriodicalId":93645,"journal":{"name":"Facta universitatis. Series, Mechanics, automatic control and robotics","volume":"7 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939730/pdf/nihms148996.pdf","citationCount":"0","resultStr":"{\"title\":\"NANOROBOTS FOR MICROFACTORIES TO OPERATIONS IN THE HUMAN BODY AND ROBOTS PROPELLED BY BACTERIA.\",\"authors\":\"Sylvain Martel\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exploitation of the properties at the nanoscale enables novel nanorobotic-based instrumented platforms and techniques. Here, some unique interdisciplinary examples from our research laboratory are briefly described providing some insights about the possibilities and the huge potentials of nanorobotics with main areas of applications in medicine and bioengineering, including supporting new robotic platforms for micro- and nano-manufacturing and high-throughput automatic operations at the nanoscale. For several applications where specifications cannot be met using modern technologies, especially at such small scales, a highly interdisciplinary approach integrating biological components in engineered systems becomes an essential part of the development process.</p>\",\"PeriodicalId\":93645,\"journal\":{\"name\":\"Facta universitatis. Series, Mechanics, automatic control and robotics\",\"volume\":\"7 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939730/pdf/nihms148996.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta universitatis. Series, Mechanics, automatic control and robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta universitatis. Series, Mechanics, automatic control and robotics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NANOROBOTS FOR MICROFACTORIES TO OPERATIONS IN THE HUMAN BODY AND ROBOTS PROPELLED BY BACTERIA.
The exploitation of the properties at the nanoscale enables novel nanorobotic-based instrumented platforms and techniques. Here, some unique interdisciplinary examples from our research laboratory are briefly described providing some insights about the possibilities and the huge potentials of nanorobotics with main areas of applications in medicine and bioengineering, including supporting new robotic platforms for micro- and nano-manufacturing and high-throughput automatic operations at the nanoscale. For several applications where specifications cannot be met using modern technologies, especially at such small scales, a highly interdisciplinary approach integrating biological components in engineered systems becomes an essential part of the development process.