基于文化的多目标粒子群优化。

Moayed Daneshyari, Gary G Yen
{"title":"基于文化的多目标粒子群优化。","authors":"Moayed Daneshyari,&nbsp;Gary G Yen","doi":"10.1109/TSMCB.2010.2068046","DOIUrl":null,"url":null,"abstract":"<p><p>Multiobjective particle swarm optimization (MOPSO) algorithms have been widely used to solve multiobjective optimization problems. Most MOPSOs use fixed momentum and acceleration for all particles throughout the evolutionary process. In this paper, we introduce a cultural framework to adapt the personalized flight parameters of the mutated particles in a MOPSO, namely momentum and personal and global accelerations, for each individual particle based upon various types of knowledge in \"belief space,\" specifically situational, normative, and topographical knowledge. A comprehensive comparison of the proposed algorithm with chosen state-of-the-art MOPSOs on benchmark test functions shows that the movement of the individual particle using the adapted parameters assists the MOPSO to perform efficiently and effectively in exploring solutions close to the true Pareto front while exploiting a local search to attain diverse solutions.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"553-67"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2010.2068046","citationCount":"98","resultStr":"{\"title\":\"Cultural-based multiobjective particle swarm optimization.\",\"authors\":\"Moayed Daneshyari,&nbsp;Gary G Yen\",\"doi\":\"10.1109/TSMCB.2010.2068046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiobjective particle swarm optimization (MOPSO) algorithms have been widely used to solve multiobjective optimization problems. Most MOPSOs use fixed momentum and acceleration for all particles throughout the evolutionary process. In this paper, we introduce a cultural framework to adapt the personalized flight parameters of the mutated particles in a MOPSO, namely momentum and personal and global accelerations, for each individual particle based upon various types of knowledge in \\\"belief space,\\\" specifically situational, normative, and topographical knowledge. A comprehensive comparison of the proposed algorithm with chosen state-of-the-art MOPSOs on benchmark test functions shows that the movement of the individual particle using the adapted parameters assists the MOPSO to perform efficiently and effectively in exploring solutions close to the true Pareto front while exploiting a local search to attain diverse solutions.</p>\",\"PeriodicalId\":55006,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"volume\":\" \",\"pages\":\"553-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TSMCB.2010.2068046\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCB.2010.2068046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2010/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2010.2068046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/9/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

多目标粒子群优化算法(MOPSO)被广泛用于解决多目标优化问题。大多数mopso在整个进化过程中对所有粒子使用固定的动量和加速度。在本文中,我们引入了一个文化框架来适应MOPSO中突变粒子的个性化飞行参数,即动量、个人和全球加速度,每个粒子基于“信念空间”中的各种类型的知识,特别是情境、规范和地形知识。将所提出的算法与选定的最先进的MOPSO在基准测试函数上的综合比较表明,使用自适应参数的单个粒子的运动有助于MOPSO在探索接近真实帕累托前沿的解时高效地执行,同时利用局部搜索获得多种解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cultural-based multiobjective particle swarm optimization.

Multiobjective particle swarm optimization (MOPSO) algorithms have been widely used to solve multiobjective optimization problems. Most MOPSOs use fixed momentum and acceleration for all particles throughout the evolutionary process. In this paper, we introduce a cultural framework to adapt the personalized flight parameters of the mutated particles in a MOPSO, namely momentum and personal and global accelerations, for each individual particle based upon various types of knowledge in "belief space," specifically situational, normative, and topographical knowledge. A comprehensive comparison of the proposed algorithm with chosen state-of-the-art MOPSOs on benchmark test functions shows that the movement of the individual particle using the adapted parameters assists the MOPSO to perform efficiently and effectively in exploring solutions close to the true Pareto front while exploiting a local search to attain diverse solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信