{"title":"哺乳动物x染色体失活比较分析的启示。","authors":"Ikuhiro Okamoto, Edith Heard","doi":"10.1007/s10577-009-9057-7","DOIUrl":null,"url":null,"abstract":"<p><p>In most mammals, X-chromosome inactivation is used as the strategy to achieve dosage compensation between XX females and XY males. This process is developmentally regulated, resulting in the differential treatment of the two X chromosomes in the same nucleus and mitotic heritability of the silent state. A lack of dosage compensation in an XX embryo is believed to result in early lethality, at least in eutherians. Given its fundamental importance, X-chromosome inactivation would be predicted to be a highly conserved process in mammals. However, recent studies have revealed major mechanistic differences in X inactivation between eutherians and marsupials, suggesting that the evolution of the X chromosome as well as developmental differences between mammals have led to diverse evolutionary strategies for dosage compensation.</p>","PeriodicalId":347802,"journal":{"name":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","volume":" ","pages":"659-69"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-009-9057-7","citationCount":"64","resultStr":"{\"title\":\"Lessons from comparative analysis of X-chromosome inactivation in mammals.\",\"authors\":\"Ikuhiro Okamoto, Edith Heard\",\"doi\":\"10.1007/s10577-009-9057-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In most mammals, X-chromosome inactivation is used as the strategy to achieve dosage compensation between XX females and XY males. This process is developmentally regulated, resulting in the differential treatment of the two X chromosomes in the same nucleus and mitotic heritability of the silent state. A lack of dosage compensation in an XX embryo is believed to result in early lethality, at least in eutherians. Given its fundamental importance, X-chromosome inactivation would be predicted to be a highly conserved process in mammals. However, recent studies have revealed major mechanistic differences in X inactivation between eutherians and marsupials, suggesting that the evolution of the X chromosome as well as developmental differences between mammals have led to diverse evolutionary strategies for dosage compensation.</p>\",\"PeriodicalId\":347802,\"journal\":{\"name\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"volume\":\" \",\"pages\":\"659-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10577-009-9057-7\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-009-9057-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-009-9057-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lessons from comparative analysis of X-chromosome inactivation in mammals.
In most mammals, X-chromosome inactivation is used as the strategy to achieve dosage compensation between XX females and XY males. This process is developmentally regulated, resulting in the differential treatment of the two X chromosomes in the same nucleus and mitotic heritability of the silent state. A lack of dosage compensation in an XX embryo is believed to result in early lethality, at least in eutherians. Given its fundamental importance, X-chromosome inactivation would be predicted to be a highly conserved process in mammals. However, recent studies have revealed major mechanistic differences in X inactivation between eutherians and marsupials, suggesting that the evolution of the X chromosome as well as developmental differences between mammals have led to diverse evolutionary strategies for dosage compensation.