Györgyi Csankovszki, Emily L Petty, Karishma S Collette
{"title":"蠕虫的解决方案是:一条充满凝缩蛋白的染色体帮助基因表达下降。","authors":"Györgyi Csankovszki, Emily L Petty, Karishma S Collette","doi":"10.1007/s10577-009-9061-y","DOIUrl":null,"url":null,"abstract":"<p><p>Dosage compensation in the nematode Caenorhabditis elegans is achieved by the binding of a condensin-like dosage compensation complex (DCC) to both X chromosomes in hermaphrodites to downregulate gene expression two-fold. Condensin I(DC), a sub-part of the DCC, differs from the mitotic condensin I complex by a single subunit, strengthening the connection between dosage compensation and mitotic chromosome condensation. The DCC is targeted to X chromosomes by initial binding to a number of recruiting elements, followed by dispersal or spreading to secondary sites. While the complex is greatly enriched on the X chromosomes, many sites on autosomes also bind the complex. DCC binding does not correlate with DCC-mediated repression, suggesting that the complex acts in a chromosome-wide manner, rather than on a gene-by-gene basis. Worm dosage compensation represents an excellent model system to study how condensin-mediated changes in higher order chromatin organization affect gene expression.</p>","PeriodicalId":347802,"journal":{"name":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","volume":" ","pages":"621-35"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992697/pdf/nihms253753.pdf","citationCount":"0","resultStr":"{\"title\":\"The worm solution: a chromosome-full of condensin helps gene expression go down.\",\"authors\":\"Györgyi Csankovszki, Emily L Petty, Karishma S Collette\",\"doi\":\"10.1007/s10577-009-9061-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dosage compensation in the nematode Caenorhabditis elegans is achieved by the binding of a condensin-like dosage compensation complex (DCC) to both X chromosomes in hermaphrodites to downregulate gene expression two-fold. Condensin I(DC), a sub-part of the DCC, differs from the mitotic condensin I complex by a single subunit, strengthening the connection between dosage compensation and mitotic chromosome condensation. The DCC is targeted to X chromosomes by initial binding to a number of recruiting elements, followed by dispersal or spreading to secondary sites. While the complex is greatly enriched on the X chromosomes, many sites on autosomes also bind the complex. DCC binding does not correlate with DCC-mediated repression, suggesting that the complex acts in a chromosome-wide manner, rather than on a gene-by-gene basis. Worm dosage compensation represents an excellent model system to study how condensin-mediated changes in higher order chromatin organization affect gene expression.</p>\",\"PeriodicalId\":347802,\"journal\":{\"name\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"volume\":\" \",\"pages\":\"621-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992697/pdf/nihms253753.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-009-9061-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10577-009-9061-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The worm solution: a chromosome-full of condensin helps gene expression go down.
Dosage compensation in the nematode Caenorhabditis elegans is achieved by the binding of a condensin-like dosage compensation complex (DCC) to both X chromosomes in hermaphrodites to downregulate gene expression two-fold. Condensin I(DC), a sub-part of the DCC, differs from the mitotic condensin I complex by a single subunit, strengthening the connection between dosage compensation and mitotic chromosome condensation. The DCC is targeted to X chromosomes by initial binding to a number of recruiting elements, followed by dispersal or spreading to secondary sites. While the complex is greatly enriched on the X chromosomes, many sites on autosomes also bind the complex. DCC binding does not correlate with DCC-mediated repression, suggesting that the complex acts in a chromosome-wide manner, rather than on a gene-by-gene basis. Worm dosage compensation represents an excellent model system to study how condensin-mediated changes in higher order chromatin organization affect gene expression.