YongFeng Shi, Jie Chen, WenQiang Liu, QiNa Huang, Bo Shen, Hei Leung, JianLi Wu
{"title":"一个水稻卷叶突变体的遗传分析与基因定位。","authors":"YongFeng Shi, Jie Chen, WenQiang Liu, QiNa Huang, Bo Shen, Hei Leung, JianLi Wu","doi":"10.1007/s11427-009-0109-1","DOIUrl":null,"url":null,"abstract":"<p><p>To understand the development of rice leaf blades, we identified a new rolled-leaf mutant, w32, from indica cultivar IR64 through EMS mutagenesis. The mutant showed a stable rolled-leaf phenotype throughout the life cycle. Two F2 populations were developed by crossing w32 to cultivar IR24 and PA64. Genetic analysis showed that the rolled-leaf phenotype was controlled by a single recessive gene. To determine the location of the gene, bulked segregant analysis was carried out using mutant and wild-type DNA pools and 1846 mutant-type F2 individuals derived from the cross w32/PA64 were genotyped to locate the gene on the short arm of chromosome 7. The rolled-leaf gene, tentatively named rl11(t), is likely a new gene as no other rolled-leaf genes have been identified near the region. By developing new SSR and InDel markers, the gene was delimited to a 52 kb region near the end of the short chromosome arm. Further fine mapping and cloning of the gene are currently underway.</p>","PeriodicalId":49127,"journal":{"name":"Science in China. Series C, Life Sciences / Chinese Academy of Sciences","volume":"52 9","pages":"885-90"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11427-009-0109-1","citationCount":"25","resultStr":"{\"title\":\"Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.).\",\"authors\":\"YongFeng Shi, Jie Chen, WenQiang Liu, QiNa Huang, Bo Shen, Hei Leung, JianLi Wu\",\"doi\":\"10.1007/s11427-009-0109-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To understand the development of rice leaf blades, we identified a new rolled-leaf mutant, w32, from indica cultivar IR64 through EMS mutagenesis. The mutant showed a stable rolled-leaf phenotype throughout the life cycle. Two F2 populations were developed by crossing w32 to cultivar IR24 and PA64. Genetic analysis showed that the rolled-leaf phenotype was controlled by a single recessive gene. To determine the location of the gene, bulked segregant analysis was carried out using mutant and wild-type DNA pools and 1846 mutant-type F2 individuals derived from the cross w32/PA64 were genotyped to locate the gene on the short arm of chromosome 7. The rolled-leaf gene, tentatively named rl11(t), is likely a new gene as no other rolled-leaf genes have been identified near the region. By developing new SSR and InDel markers, the gene was delimited to a 52 kb region near the end of the short chromosome arm. Further fine mapping and cloning of the gene are currently underway.</p>\",\"PeriodicalId\":49127,\"journal\":{\"name\":\"Science in China. Series C, Life Sciences / Chinese Academy of Sciences\",\"volume\":\"52 9\",\"pages\":\"885-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11427-009-0109-1\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in China. Series C, Life Sciences / Chinese Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11427-009-0109-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China. Series C, Life Sciences / Chinese Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11427-009-0109-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/10/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.).
To understand the development of rice leaf blades, we identified a new rolled-leaf mutant, w32, from indica cultivar IR64 through EMS mutagenesis. The mutant showed a stable rolled-leaf phenotype throughout the life cycle. Two F2 populations were developed by crossing w32 to cultivar IR24 and PA64. Genetic analysis showed that the rolled-leaf phenotype was controlled by a single recessive gene. To determine the location of the gene, bulked segregant analysis was carried out using mutant and wild-type DNA pools and 1846 mutant-type F2 individuals derived from the cross w32/PA64 were genotyped to locate the gene on the short arm of chromosome 7. The rolled-leaf gene, tentatively named rl11(t), is likely a new gene as no other rolled-leaf genes have been identified near the region. By developing new SSR and InDel markers, the gene was delimited to a 52 kb region near the end of the short chromosome arm. Further fine mapping and cloning of the gene are currently underway.