{"title":"干细胞和体细胞:重编程和可塑性","authors":"Zeev Estrov","doi":"10.3816/CLM.2009.s.031","DOIUrl":null,"url":null,"abstract":"<div><p>Recent seminal discoveries have significantly advanced the field of stem cell research and received worldwide attention. Improvements in somatic cell nuclear transfer (SCNT) technology, enabling the cloning of Dolly the sheep, and the derivation and differentiation of human embryonic stem cells raised hopes that normal cells could be generated to replace diseased or injured tissue. At the same time, in vitro and in vivo studies demonstrated that somatic cells of one tissue are capable of generating cells of another tissue. It was theorized that any cell might be reprogrammed, by exposure to a new environment, to become another cell type. This concept contradicts two established hypotheses: (1) that only specific tissues are generated from the endoderm, mesoderm, and ectoderm and (2) that tissue cells arise from a rare population of tissue-specific stem cells in a hierarchical fashion. SCNT, cell fusion experiments, and most recent gene transfer studies also contradict these hypotheses, as they demonstrate that mature somatic cells can be reprogrammed to regain pluripotent (or even totipotent) stem cell capacity. On the basis of the stem cell theory, hierarchical cancer stem cell differentiation models have been proposed. Cancer cell plasticity is an established phenomenon that supports the notion that cellular phenotype and function might be altered. Therefore, mechanisms of cellular plasticity should be exploited and the clinical significance of the cancer stem cell theory cautiously assessed.</p></div>","PeriodicalId":100272,"journal":{"name":"Clinical Lymphoma and Myeloma","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3816/CLM.2009.s.031","citationCount":"15","resultStr":"{\"title\":\"Stem Cells and Somatic Cells: Reprogramming and Plasticity\",\"authors\":\"Zeev Estrov\",\"doi\":\"10.3816/CLM.2009.s.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent seminal discoveries have significantly advanced the field of stem cell research and received worldwide attention. Improvements in somatic cell nuclear transfer (SCNT) technology, enabling the cloning of Dolly the sheep, and the derivation and differentiation of human embryonic stem cells raised hopes that normal cells could be generated to replace diseased or injured tissue. At the same time, in vitro and in vivo studies demonstrated that somatic cells of one tissue are capable of generating cells of another tissue. It was theorized that any cell might be reprogrammed, by exposure to a new environment, to become another cell type. This concept contradicts two established hypotheses: (1) that only specific tissues are generated from the endoderm, mesoderm, and ectoderm and (2) that tissue cells arise from a rare population of tissue-specific stem cells in a hierarchical fashion. SCNT, cell fusion experiments, and most recent gene transfer studies also contradict these hypotheses, as they demonstrate that mature somatic cells can be reprogrammed to regain pluripotent (or even totipotent) stem cell capacity. On the basis of the stem cell theory, hierarchical cancer stem cell differentiation models have been proposed. Cancer cell plasticity is an established phenomenon that supports the notion that cellular phenotype and function might be altered. Therefore, mechanisms of cellular plasticity should be exploited and the clinical significance of the cancer stem cell theory cautiously assessed.</p></div>\",\"PeriodicalId\":100272,\"journal\":{\"name\":\"Clinical Lymphoma and Myeloma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3816/CLM.2009.s.031\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Lymphoma and Myeloma\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1557919011703596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Lymphoma and Myeloma","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1557919011703596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stem Cells and Somatic Cells: Reprogramming and Plasticity
Recent seminal discoveries have significantly advanced the field of stem cell research and received worldwide attention. Improvements in somatic cell nuclear transfer (SCNT) technology, enabling the cloning of Dolly the sheep, and the derivation and differentiation of human embryonic stem cells raised hopes that normal cells could be generated to replace diseased or injured tissue. At the same time, in vitro and in vivo studies demonstrated that somatic cells of one tissue are capable of generating cells of another tissue. It was theorized that any cell might be reprogrammed, by exposure to a new environment, to become another cell type. This concept contradicts two established hypotheses: (1) that only specific tissues are generated from the endoderm, mesoderm, and ectoderm and (2) that tissue cells arise from a rare population of tissue-specific stem cells in a hierarchical fashion. SCNT, cell fusion experiments, and most recent gene transfer studies also contradict these hypotheses, as they demonstrate that mature somatic cells can be reprogrammed to regain pluripotent (or even totipotent) stem cell capacity. On the basis of the stem cell theory, hierarchical cancer stem cell differentiation models have been proposed. Cancer cell plasticity is an established phenomenon that supports the notion that cellular phenotype and function might be altered. Therefore, mechanisms of cellular plasticity should be exploited and the clinical significance of the cancer stem cell theory cautiously assessed.