{"title":"一种用于求解变分不等式和相关优化问题的替代递归神经网络。","authors":"Xiaolin Hu, Bo Zhang","doi":"10.1109/TSMCB.2009.2025700","DOIUrl":null,"url":null,"abstract":"<p><p>There exist many recurrent neural networks for solving optimization-related problems. In this paper, we present a method for deriving such networks from existing ones by changing connections between computing blocks. Although the dynamic systems may become much different, some distinguished properties may be retained. One example is discussed to solve variational inequalities and related optimization problems with mixed linear and nonlinear constraints. A new network is obtained from two classical models by this means, and its performance is comparable to its predecessors. Thus, an alternative choice for circuits implementation is offered to accomplish such computing tasks.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1640-5"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2009.2025700","citationCount":"30","resultStr":"{\"title\":\"An alternative recurrent neural network for solving variational inequalities and related optimization problems.\",\"authors\":\"Xiaolin Hu, Bo Zhang\",\"doi\":\"10.1109/TSMCB.2009.2025700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There exist many recurrent neural networks for solving optimization-related problems. In this paper, we present a method for deriving such networks from existing ones by changing connections between computing blocks. Although the dynamic systems may become much different, some distinguished properties may be retained. One example is discussed to solve variational inequalities and related optimization problems with mixed linear and nonlinear constraints. A new network is obtained from two classical models by this means, and its performance is comparable to its predecessors. Thus, an alternative choice for circuits implementation is offered to accomplish such computing tasks.</p>\",\"PeriodicalId\":55006,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"volume\":\" \",\"pages\":\"1640-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TSMCB.2009.2025700\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCB.2009.2025700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2009.2025700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
An alternative recurrent neural network for solving variational inequalities and related optimization problems.
There exist many recurrent neural networks for solving optimization-related problems. In this paper, we present a method for deriving such networks from existing ones by changing connections between computing blocks. Although the dynamic systems may become much different, some distinguished properties may be retained. One example is discussed to solve variational inequalities and related optimization problems with mixed linear and nonlinear constraints. A new network is obtained from two classical models by this means, and its performance is comparable to its predecessors. Thus, an alternative choice for circuits implementation is offered to accomplish such computing tasks.