{"title":"混合时滞不确定神经网络的新时滞相关指数H(∞)同步。","authors":"Hamid Reza Karimi, Huijun Gao","doi":"10.1109/TSMCB.2009.2024408","DOIUrl":null,"url":null,"abstract":"<p><p>This paper establishes an exponential H(infinity) synchronization method for a class of uncertain master and slave neural networks (MSNNs) with mixed time delays, where the mixed delays comprise different neutral, discrete, and distributed time delays. The polytopic and the norm-bounded uncertainties are separately taken into consideration. An appropriate discretized Lyapunov-Krasovskii functional and some free-weighting matrices are utilized to establish some delay-dependent sufficient conditions for designing delayed state-feedback control as a synchronization law in terms of linear matrix inequalities under less restrictive conditions. The controller guarantees the exponential H(infinity) synchronization of the two coupled MSNNs regardless of their initial states. Detailed comparisons with existing results are made, and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"173-85"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2009.2024408","citationCount":"393","resultStr":"{\"title\":\"New delay-dependent exponential H(infinity) synchronization for uncertain neural networks with mixed time delays.\",\"authors\":\"Hamid Reza Karimi, Huijun Gao\",\"doi\":\"10.1109/TSMCB.2009.2024408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper establishes an exponential H(infinity) synchronization method for a class of uncertain master and slave neural networks (MSNNs) with mixed time delays, where the mixed delays comprise different neutral, discrete, and distributed time delays. The polytopic and the norm-bounded uncertainties are separately taken into consideration. An appropriate discretized Lyapunov-Krasovskii functional and some free-weighting matrices are utilized to establish some delay-dependent sufficient conditions for designing delayed state-feedback control as a synchronization law in terms of linear matrix inequalities under less restrictive conditions. The controller guarantees the exponential H(infinity) synchronization of the two coupled MSNNs regardless of their initial states. Detailed comparisons with existing results are made, and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.</p>\",\"PeriodicalId\":55006,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"volume\":\" \",\"pages\":\"173-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TSMCB.2009.2024408\",\"citationCount\":\"393\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCB.2009.2024408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/7/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2009.2024408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/7/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
New delay-dependent exponential H(infinity) synchronization for uncertain neural networks with mixed time delays.
This paper establishes an exponential H(infinity) synchronization method for a class of uncertain master and slave neural networks (MSNNs) with mixed time delays, where the mixed delays comprise different neutral, discrete, and distributed time delays. The polytopic and the norm-bounded uncertainties are separately taken into consideration. An appropriate discretized Lyapunov-Krasovskii functional and some free-weighting matrices are utilized to establish some delay-dependent sufficient conditions for designing delayed state-feedback control as a synchronization law in terms of linear matrix inequalities under less restrictive conditions. The controller guarantees the exponential H(infinity) synchronization of the two coupled MSNNs regardless of their initial states. Detailed comparisons with existing results are made, and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.