{"title":"在垂直于流动平面的磁场作用下,多通道管道内的磁流体动力学流动调谐","authors":"Y. Luo , C.N. Kim , M.Q. Zhu","doi":"10.1016/S1001-6058(16)60743-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field are numerically investigated. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows into the inflow channel, then turns through in the transition segment, finally flows into three different outflow channels. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before though the conceptual designs of duct flow in the blanket have suggested this type of flow. A structured grid system is chosen after a series of mesh independence tests in the present study. The axial velocity in the side layer near the first partitioning wall, located between the inflow channel and the first outflow channel, is the highest with the lowest electric potential formed therein. The pressure almost linearly decreases in the main flow direction, except in the transition segment. Moreover, the pressure gradient in the first outflow channel is the largest among the three outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows.</p></div>","PeriodicalId":66131,"journal":{"name":"水动力学研究与进展:英文版","volume":"29 2","pages":"Pages 332-343"},"PeriodicalIF":3.4000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60743-6","citationCount":"4","resultStr":"{\"title\":\"Magnetohydrodynamic flows tuning in a conduit with multiple channels under a magnetic field applied perpendicular to the plane of flow\",\"authors\":\"Y. Luo , C.N. Kim , M.Q. Zhu\",\"doi\":\"10.1016/S1001-6058(16)60743-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field are numerically investigated. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows into the inflow channel, then turns through in the transition segment, finally flows into three different outflow channels. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before though the conceptual designs of duct flow in the blanket have suggested this type of flow. A structured grid system is chosen after a series of mesh independence tests in the present study. The axial velocity in the side layer near the first partitioning wall, located between the inflow channel and the first outflow channel, is the highest with the lowest electric potential formed therein. The pressure almost linearly decreases in the main flow direction, except in the transition segment. Moreover, the pressure gradient in the first outflow channel is the largest among the three outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows.</p></div>\",\"PeriodicalId\":66131,\"journal\":{\"name\":\"水动力学研究与进展:英文版\",\"volume\":\"29 2\",\"pages\":\"Pages 332-343\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60743-6\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"水动力学研究与进展:英文版\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001605816607436\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"水动力学研究与进展:英文版","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001605816607436","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Magnetohydrodynamic flows tuning in a conduit with multiple channels under a magnetic field applied perpendicular to the plane of flow
In this study, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field are numerically investigated. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows into the inflow channel, then turns through in the transition segment, finally flows into three different outflow channels. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before though the conceptual designs of duct flow in the blanket have suggested this type of flow. A structured grid system is chosen after a series of mesh independence tests in the present study. The axial velocity in the side layer near the first partitioning wall, located between the inflow channel and the first outflow channel, is the highest with the lowest electric potential formed therein. The pressure almost linearly decreases in the main flow direction, except in the transition segment. Moreover, the pressure gradient in the first outflow channel is the largest among the three outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows.