动态环境下的群体互动分析。

Peng Dai, Huijun Di, Ligeng Dong, Linmi Tao, Guangyou Xu
{"title":"动态环境下的群体互动分析。","authors":"Peng Dai,&nbsp;Huijun Di,&nbsp;Ligeng Dong,&nbsp;Linmi Tao,&nbsp;Guangyou Xu","doi":"10.1109/TSMCB.2008.2009559","DOIUrl":null,"url":null,"abstract":"<p><p>Computer understanding of human actions and interactions is one of the key research issues in human computing. In this regard, context plays an essential role in semantic understanding of human behavioral and social signals from sensor data. This paper put forward an event-based dynamic context model to address the problems of context awareness in the analysis of group interaction scenarios. Event-driven multilevel dynamic Bayesian network is correspondingly proposed to detect multilevel events, which underlies the context awareness mechanism. Online analysis can be achieved, which is superior over previous works. Experiments in our smart meeting room demonstrate the effectiveness of our approach.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"34-42"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2008.2009559","citationCount":"54","resultStr":"{\"title\":\"Group interaction analysis in dynamic context.\",\"authors\":\"Peng Dai,&nbsp;Huijun Di,&nbsp;Ligeng Dong,&nbsp;Linmi Tao,&nbsp;Guangyou Xu\",\"doi\":\"10.1109/TSMCB.2008.2009559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computer understanding of human actions and interactions is one of the key research issues in human computing. In this regard, context plays an essential role in semantic understanding of human behavioral and social signals from sensor data. This paper put forward an event-based dynamic context model to address the problems of context awareness in the analysis of group interaction scenarios. Event-driven multilevel dynamic Bayesian network is correspondingly proposed to detect multilevel events, which underlies the context awareness mechanism. Online analysis can be achieved, which is superior over previous works. Experiments in our smart meeting room demonstrate the effectiveness of our approach.</p>\",\"PeriodicalId\":55006,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"volume\":\" \",\"pages\":\"34-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TSMCB.2008.2009559\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCB.2008.2009559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2008.2009559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

计算机对人类行为和交互的理解是人类计算的关键研究问题之一。在这方面,上下文在从传感器数据中对人类行为和社会信号的语义理解中起着至关重要的作用。针对群体交互场景分析中的情境感知问题,提出了一种基于事件的动态情境模型。相应的,提出了事件驱动的多层次动态贝叶斯网络来检测多层次事件,这是上下文感知机制的基础。可以实现在线分析,优于以往的工作。在我们的智能会议室中进行的实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group interaction analysis in dynamic context.

Computer understanding of human actions and interactions is one of the key research issues in human computing. In this regard, context plays an essential role in semantic understanding of human behavioral and social signals from sensor data. This paper put forward an event-based dynamic context model to address the problems of context awareness in the analysis of group interaction scenarios. Event-driven multilevel dynamic Bayesian network is correspondingly proposed to detect multilevel events, which underlies the context awareness mechanism. Online analysis can be achieved, which is superior over previous works. Experiments in our smart meeting room demonstrate the effectiveness of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信