Emily Maclary, Michael Hinten, Clair Harris, Sundeep Kalantry
{"title":"x -失活中心的长链无氧rna。","authors":"Emily Maclary, Michael Hinten, Clair Harris, Sundeep Kalantry","doi":"10.1007/s10577-013-9396-2","DOIUrl":null,"url":null,"abstract":"<p><p>The X-inactivation center is a hotbed of functional long noncoding RNAs in eutherian mammals. These RNAs are thought to help orchestrate the epigenetic transcriptional states of the two X-chromosomes in females as well as of the single X-chromosome in males. To balance X-linked gene expression between the sexes, females undergo transcriptional silencing of most genes on one of the two X-chromosomes in a process termed X-chromosome inactivation. While one X-chromosome is inactivated, the other X-chromosome remains active. Moreover, with a few notable exceptions, the originally established epigenetic transcriptional profiles of the two X-chromosomes is maintained as such through many rounds of cell division, essentially for the life of the organism. The stable and divergent transcriptional fates of the two X-chromosomes, despite residing in a shared nucleoplasm, make X-inactivation a paradigm of epigenetic transcriptional regulation. Originally proposed in 1961 by Mary Lyon, the X-inactivation hypothesis has been validated through much experimentation. In the last 25 years, the discovery and functional characterization has firmly established X-linked long noncoding RNAs as key players in choreographing X-chromosome inactivation.</p>","PeriodicalId":347802,"journal":{"name":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","volume":" ","pages":"601-614"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-013-9396-2","citationCount":"27","resultStr":"{\"title\":\"Long nonoding RNAs in the X-inactivation center.\",\"authors\":\"Emily Maclary, Michael Hinten, Clair Harris, Sundeep Kalantry\",\"doi\":\"10.1007/s10577-013-9396-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The X-inactivation center is a hotbed of functional long noncoding RNAs in eutherian mammals. These RNAs are thought to help orchestrate the epigenetic transcriptional states of the two X-chromosomes in females as well as of the single X-chromosome in males. To balance X-linked gene expression between the sexes, females undergo transcriptional silencing of most genes on one of the two X-chromosomes in a process termed X-chromosome inactivation. While one X-chromosome is inactivated, the other X-chromosome remains active. Moreover, with a few notable exceptions, the originally established epigenetic transcriptional profiles of the two X-chromosomes is maintained as such through many rounds of cell division, essentially for the life of the organism. The stable and divergent transcriptional fates of the two X-chromosomes, despite residing in a shared nucleoplasm, make X-inactivation a paradigm of epigenetic transcriptional regulation. Originally proposed in 1961 by Mary Lyon, the X-inactivation hypothesis has been validated through much experimentation. In the last 25 years, the discovery and functional characterization has firmly established X-linked long noncoding RNAs as key players in choreographing X-chromosome inactivation.</p>\",\"PeriodicalId\":347802,\"journal\":{\"name\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"volume\":\" \",\"pages\":\"601-614\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10577-013-9396-2\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-013-9396-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-013-9396-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The X-inactivation center is a hotbed of functional long noncoding RNAs in eutherian mammals. These RNAs are thought to help orchestrate the epigenetic transcriptional states of the two X-chromosomes in females as well as of the single X-chromosome in males. To balance X-linked gene expression between the sexes, females undergo transcriptional silencing of most genes on one of the two X-chromosomes in a process termed X-chromosome inactivation. While one X-chromosome is inactivated, the other X-chromosome remains active. Moreover, with a few notable exceptions, the originally established epigenetic transcriptional profiles of the two X-chromosomes is maintained as such through many rounds of cell division, essentially for the life of the organism. The stable and divergent transcriptional fates of the two X-chromosomes, despite residing in a shared nucleoplasm, make X-inactivation a paradigm of epigenetic transcriptional regulation. Originally proposed in 1961 by Mary Lyon, the X-inactivation hypothesis has been validated through much experimentation. In the last 25 years, the discovery and functional characterization has firmly established X-linked long noncoding RNAs as key players in choreographing X-chromosome inactivation.